<?xml version='1.0'encoding='utf-8'?> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <!-- used by XSLT processors --> <?xml-model href="https://raw.githubusercontent.com/ietf-tools/xml2rfc/main/xml2rfc/data/v3.rng" schematypens="http://relaxng.org/ns/structure/1.0" type="application/xml"?> <!-- For a complete list and description of processing instructions (PIs), please see http://xml.resource.org/authoring/README.html. --> <!-- Below are generally applicable Processing Instructions (PIs) that most I-Ds might want to use. (Here they are set differently than their defaults in xml2rfc v1.32) --> <?rfc strict="yes" ?> <!-- give errors regarding ID-nits and DTD validation --> <!-- control the table of contents (ToC) --> <?rfc toc="yes"?> <!-- generate a ToC --> <?rfc tocdepth="4"?> <!-- the number of levels of subsections in ToC. default: 3 --> <!-- control references --> <?rfc symrefs="yes"?> <!-- use symbolic references tags, i.e, [RFC2119] instead of [1] --> <?rfc sortrefs="yes" ?> <!-- sort the reference entries alphabetically --> <!-- control vertical white space (using these PIs as follows is recommended by the RFC Editor) --> <?rfc compact="yes" ?> <!-- do not start each main section on a new page --> <?rfc subcompact="no" ?> <!-- keep one blank line between list items --> <!-- end of list of popular I-D processing instructions -->encoding='UTF-8'?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" category="std" docName="draft-ietf-add-split-horizon-authority-14" number="9704" updates="" obsoletes="" ipr="trust200902" submissionType="IETF" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3" consensus="true"> <front> <title abbrev="Establishing Local DNS Authority">Establishing Local DNS Authority in Validated Split-Horizon Environments</title> <seriesInfoname="Internet-Draft" value="draft-ietf-add-split-horizon-authority-14"/>name="RFC" value="9704"/> <author fullname="TirumaleswarReddy"Reddy.K" initials="T."surname="Reddy">surname="Reddy.K"> <organization>Nokia</organization> <address> <postal> <country>India</country> </postal> <email>kondtir@gmail.com</email> </address> </author> <author fullname="Dan Wing" initials="D." surname="Wing"> <organization abbrev="Citrix">Citrix Systems, Inc.</organization> <address> <postal><street>4988 Great America Pkwy</street> <city>Santa Clara</city> <region>CA</region> <code>95054</code> <country>USA</country><country>United States of America</country> </postal> <email>danwing@gmail.com</email> </address> </author> <author fullname="Kevin Smith" initials="K." surname="Smith"> <organization abbrev="Vodafone">Vodafone Group</organization> <address> <postal> <street>One Kingdom Street</street> <city>London</city><country>UK</country><country>United Kingdom</country> </postal> <email>kevin.smith@vodafone.com</email> </address> </author> <author fullname="Benjamin Schwartz" initials="B." surname="Schwartz"> <organization abbrev="Meta">Meta Platforms, Inc.</organization> <address> <email>ietf@bemasc.net</email> </address> </author><date/> <workgroup>ADD</workgroup><date month="January" year="2025"/> <area>INT</area> <workgroup>add</workgroup> <abstract> <t>When split-horizon DNS is deployed by a network, certain domain names can be resolved authoritatively by a network-provided DNS resolver. DNS clients that are not configured to use this resolver by default can use it for these specific domains only. This specification defines a mechanism for domain owners to inform DNS clients about local resolvers that are authorized to answer authoritatively for certain subdomains.</t> </abstract><note title="Discussion Venues" removeInRFC="true"> <t>Discussion of this document takes place on the Adaptive DNS Discovery Working Group mailing list (add@ietf.org), which is archived at <eref target="https://mailarchive.ietf.org/arch/browse/add/"/>.</t> <t>Source for this draft and an issue tracker can be found at <eref target="https://github.com/ietf-wg-add/draft-ietf-add-split-horizon-authority"/>.</t> </note></front> <middle> <section anchor="intro"> <name>Introduction</name> <t>To resolve a DNS query, there are three main behaviors that an implementation can apply: (1) answer from a local database, (2) query the relevant authorities and their parents, or (3) ask a server to query those authorities and return the final answer. Implementations that use these behaviors are called "authoritative nameservers", "full/recursive resolvers", and "forwarders" (or "stubresolvers")resolvers"), respectively. However, an implementation can also implement a mixture of these behaviors, depending onalocal policy, for each query. Such an implementation is termed a "hybrid resolver".</t> <t>Most DNS resolvers are hybrids of some kind. For example, stub resolvers support a local "hosts file" that preempts query forwarding, and most DNS forwarders and full resolvers can also serve responses from a local zone file. Other standardized hybrid resolution behaviors include <xreftarget="RFC8806">Local Root</xref>,target="RFC8806">using a local root</xref>, <xreftarget="RFC6762">mDNS</xref>,target="RFC6762">Multicast DNS (mDNS)</xref>, and <xref target="RFC7686">NXDOMAIN synthesis for .onion</xref>.</t> <t>Networks usually offer clients a DNS resolver using means such as(e.g.,DHCPOFFER,offers or IPv6 RouterAdvertisement).Advertisements (RAs). Although this resolver is formally specified as a recursive resolver (e.g.,<relrefsee <xref section="5.1" target="RFC8106"/>), some networks provide a hybrid resolver instead. If this resolver acts as an authoritative server for some names andprovides different answers for those domains-- depending on the source of thequery, it is described asquery -- provides different answers for those domains, the networkhavingis said to be using "split-horizon DNS", because those names resolve in this way only from inside the network.</t> <t>DNS clients that use pure stub resolution, sending all queries to the network-provided resolver, will always receive the split-horizon results. Conversely, clients that send all queries to a different resolver or implement pure full resolution locally will never receive them. Clients that strictly implement either of these resolution behaviors are out of scope for this specification. Instead, this specification enables hybrid clients to access split-horizon results from a network-provided hybrid resolver, while using a different resolution method for some or all other names.</t> <t>There are several existing mechanisms for a network to provide clients with "local domain hints", listing domain names thathaveare given special treatment in this network (e.g., <xref target="RFC6731">RDNSS Selection</xref>,"Recursive DNS Server (RDNSS) selection"</xref>, <xref target="RFC5986">"Access Network Domain Name"</xref>,"access network domain name"</xref>, and "ClientFQDN"Fully Qualified Domain Name (FQDN)" <xref target="RFC4702"/> <xreftarget="RFC4702"/><xreftarget="RFC4704"/> inDHCP,DHCP; "dnsZones" in Provisioning Domains (PvDs) <xreftarget="RFC8801"/>,target="RFC8801"/>; and <xreftarget="RFC8598">INTERNAL_DNS_DOMAIN</xref>target="RFC8598">"INTERNAL_DNS_DOMAIN"</xref> inIKEv2).Internet Key Exchange Protocol Version 2 (IKEv2)). However, none of the local domain hint mechanismsenablesenable clients to determine whether this special treatment is authorized by the domain owner. Instead, these specifications require clients to make their own determinations about whether to trust and rely on these hints.</t> <t>This document describes a mechanism between domain names, networks, and clients that allows the network to establish its authority over a domain to a client (<xref target="establishing"/>). Clients can use this protocol to confirm that a local domain hint was authorized by the domain owner (<xref target="validating"/>), which might influence its processing of that hint. This process requires cooperation between the local DNS zone and the public zone.</t><t>This specification relies on<t>In this specification, network operators securelyidentifiedidentify the local DNS servers, andchecksclients check each local domain hint against a globally valid parent zone.</t> </section> <section anchor="notation"> <name>Terminology</name> <t>The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xreftarget="RFC2119"/><xreftarget="RFC8174"/> when, and only when, they appear in all capitals, as shown here.</t> <t>This document makes use of the terms defined in <xref target="RFC9499"/>, e.g.,"Global"global DNS". The following additional terms are used throughoutthethis document:</t> <dl> <dt>EncryptedDNS</dt><dd>ADNS:</dt><dd>A DNS protocol that provides an encrypted channel between a DNS client and server (e.g., DNS over TLS (DoT) <xref target="RFC7858"/>, DNS (queries) over HTTPS (DoH) <xref target="RFC8484"/>, DNS over QUIC (DoQ) <xref target="RFC9250"/>).</dd> <dt>Encrypted DNSresolver</dt><dd>RefersResolver:</dt><dd>Refers to a DNS resolver that supports any encrypted DNS scheme.</dd> <dt>Split-HorizonDNS</dt><dd>TheDNS:</dt><dd>The DNS service provided by a resolver that also acts as an authoritative server for some names, providing resolution results that are meaningfully different from those in theGlobalglobal DNS. (See"Splitthe definition of "split DNS" in<relref<xref section="6" target="RFC9499"/>.)</dd> <dt>ValidatedSplit-Horizon</dt><dd>A split horizonSplit Horizon:</dt><dd>A split-horizon configurationfor some namethat isconsidered "validated" ifauthorized by theclient has confirmed that a parentparents ofthat name has authorized this resolver to serve its own responses for that name.the affected names and confirmed by the client. Such authorization generally extends to the entire subtree of names below the authorization point.</dd> </dl> <t>In this document, the terms'owner'"owner" and'operator'"operator" are used interchangeably and refer to the individual or entity responsible for the management and maintenance of domains.</t> <t>Long lines in examples are wrapped using a single backslash ("\") per <xref target="RFC8792"/>.</t> </section> <section> <name>Scope</name> <t>The protocol described in this document is designed to support the ability of a domain owner to create or authorize a split-horizon view of their domain. The protocol does not support split-horizon views created by any other entity. Thus, DNS filtering is not enabled by this protocol.</t> <t>The protocol is applicable to any type of network offering split-horizon DNS configuration. The endpoint does not need any prior configuration to confirm that a local domain hint was indeed authorized by the domain.</t> <t>All of thespecial-use domain namesSpecial-Use Domain Names registered with IANA <xref target="RFC6761"/>, most notably".home.arpa","home.arpa.", "resolver.arpa.","ipv4only.arpa.""ipv4only.arpa.", and".local","local.", are never unique to a specific DNS server's authority. Allspecial-use domain namesSpecial-Use Domain Names are outside the scope of this document andMUST NOT<bcp14>MUST NOT</bcp14> be validated using the mechanism described in this document. </t><t> Use<t>The use of this specification is limited to DNS servers that support authenticated encryption and split-horizon DNS names that are rooted in the global DNS.</t> </section> <section> <name>Requirements</name> <t>This solution seeks to fulfill the following requirements:</t><ul> <li>No<dl newline="false" spacing="normal"> <dt>No loss ofsecurity: Nosecurity:</dt><dd>No unauthorized party can impersonate a zone unless they could already do so without the use of thisspecification.</li> <li>Least privilege: Localspecification.</dd> <dt>Least privilege:</dt><dd>Local resolvers do not hold any secrets that could weaken the security of the public zone ifcompromised.</li> <li>Localcompromised.</dd> <dt>Local zoneconfidentiality: Theconfidentiality:</dt><dd>The specification does not leak local network subdomains to anyone outside of thenetwork.</li> <li>Flexibility: Thenetwork.</dd> <dt>Flexibility:</dt><dd>The specification can represent and authorize aSplitsplit DNS zonestructure.</li> <li>DNSSEC Compatibility: Thestructure.</dd> <dt>DNSSEC compatibility:</dt><dd>The specification supports DNSSEC-based<xref target="RFC9364"/>object security for local zonecontents.</li> </ul>contents per <xref target="RFC9364"/>.</dd> </dl> </section> <section anchor="establishing"> <name>Establishing Local DNS Authority</name> <t>A participating network <bcp14>MUST</bcp14> offer one or more encrypted resolvers via DHCP and Router AdvertisementOptionsoptions for the Discovery of Network-designated Resolvers (DNR) <xref target="RFC9463"/>, Discovery of Designated Resolvers (DDR) <xref target="RFC9462"/>, or an equivalent mechanism (see <xref target="vpn"/>).</t> <t>To establish local authority, the networkMUST<bcp14>MUST</bcp14> convey one or more"Authorization Claims""authorization claims" to the client. An"Authorization Claim"authorization claim is an abstract structure comprising:</t> <ul> <li>An Authentication Domain Name (ADN) of a local encrypted resolver.</li> <li>The DNS name of the authorizing parent zone.</li> <li>A set of subdomains of this parent zone that are claimed by the named local resolver (potentially including the entire parent zone). To claim the entire parent zone, the claimed subdomain will be represented as an asterisk symbol"*".</li>("*").</li> <li>A ZONEMD Hash Algorithm(<relref(<xref section="5.3" target="RFC8976"/>). For interoperabilitypurposespurposes, implementationsMUST<bcp14>MUST</bcp14> support the "mandatory to implement" hash algorithms defined in<relref<xref section="2.2.3" target="RFC8976"/>. </li> <li>A high-entropy salt, up to 255 octets.</li> </ul> <t>If the local encrypted resolver is identified by name (e.g., using DNR), that identifying nameMUST<bcp14>MUST</bcp14> be theonename used in any correspondingAuthorization Claim.authorization claim. Otherwise (e.g., DDR using IP addresses), the resolverMUST<bcp14>MUST</bcp14> present a validatable certificate containing a subjectAltName that matches theAuthorization Claimauthorization claim using the validation techniques for matching as described in <xref target="RFC9525"/>.</t> <t>The network then provides eachAuthorization Claimauthorization claim to the parent zone operator. If the contents are approved, the parent zone operator computes a "Verification Token" according to the following procedure:</t> <ol> <li>Convert all subdomains into canonical form and sort them in canonical order(<relref(<xref section="6" target="RFC4034"/>).</li> <li>Replace the suffix corresponding to the parent zone with a zero octet.</li> <li>Let $X be the concatenation of the resulting pseudo-FQDNs.</li> <li>Let len($SALT) be the number of octets of salt, as a single octet.</li> <li>Let $TOKEN = hash(len($SALT) || $SALT ||$X). Where$X), where "||" denotes concatenation and hash is the ZONEMD Hash Algorithm.</li> </ol> <t>The zone operator then publishes a "Verification Record" with the following structure, following the best practices outlined inSections 5.1Sections <xref target="I-D.ietf-dnsop-domain-verification-techniques" sectionFormat="bare" section="5.2"/> and5.2<xref target="I-D.ietf-dnsop-domain-verification-techniques" sectionFormat="bare" section="5.3"/> of <xref target="I-D.ietf-dnsop-domain-verification-techniques"/>:</t> <ul> <li>Type =TXT.</li>TXT</li> <li>Owner Name = Concatenation of the ADN, "_splitdns-challenge", and the parent zonename.</li>name</li> <li>Contents = "key/value" pairs, e.g., "token=base64url($TOKEN)" (without padding)</li> </ul> <t>By publishing this record, the parent zone authorizes the local encrypted resolver to serve these subdomains authoritatively.</t> <section> <name>Example</name> <t>Consider the following authorization claim:</t> <ul> <li>ADN = "resolver17.parent.example"</li> <li>Parent = "parent.example"</li> <li>Subdomains = "payroll.parent.example", "secret.project.parent.example"</li> <li>Hash Algorithm = SHA-384 <xref target="RFC6234"/></li> <li>Salt = "example salt octets (should be random)"</li> </ul> <t>To approve this claim, the zone operator would publish the following record:</t><t>NOTE: '\' line wrapping per <xref target="RFC8792"/></t><sourcecode type="dns-rr"> resolver17.parent.example._splitdns-challenge.parent.example. \ IN TXT "token=z1qyK7QWwQPkT-ZmVW-tAQbsNyYenTNBPp5ogYB8S1wesVCR\ -KJDv2eFwfJcWQM" </sourcecode> </section> <section> <name>Conveying Authorization Claims</name> <t> TheAuthorization Claimauthorization claim is an abstract structure that must be encoded in some concrete syntax in order to convey it from the network to the client. This section defines some encodings of theAuthorization Claims.authorization claims. </t> <section> <name>Using DHCP</name> <t> In DHCP, eachAuthorization Claimauthorization claim is encoded as a DHCP AuthenticationOptionoption (<xref target="RFC3118"/> and<relref<xref section="21.11" target="RFC8415"/>), using the Protocol value$TBD1, "Split DNS Authentication".4, "Split-horizon DNS". In DHCPv4 <xref target="RFC2131"/>, thelong-optionsmechanism for splitting long options as described in<relref<xref section="8" target="RFC3396"/>MUST<bcp14>MUST</bcp14> be used if theauthenticationAuthentication option exceeds the maximum DHCPv4 option size of 255 octets. The Algorithm field provides the ZONEMD Hash Algorithm, represented by its registered Value. The Replay Detection Method value <bcp14>MUST</bcp14> be 0x00. The Authentication Information <bcp14>MUST</bcp14> contain the following information, concatenated:</t> <ol> <li>The ADN in canonical form.</li> <li>The parent name in canonical form.</li> <li>A one-octet "salt length" field.</li> <li>The salt value.</li> <li>The $X value as defined in <xref target="establishing"/>.</li> </ol> </section> <section anchor="splitclaims"> <name>Using Provisioning Domains</name> <t>When using <xreftarget="RFC8801">Provisioning Domains</xref>,target="RFC8801">PvDs</xref>, theAuthorization Claimsauthorization claims are represented by the PvD Additional Information key "splitDnsClaims", whose value is a JSONArray.array. Each entry in the array <bcp14>MUST</bcp14> be a JSON object with the following structure:</t><ul> <li>"resolver": The<dl newline="false" spacing="normal"> <dt>"resolver":</dt><dd>The ADN as a dot-separatedname.</li> <li>"parent": Thename.</dd> <dt>"parent":</dt><dd>The parent zone name as a dot-separatedname.</li> <li>"subdomains": Anname.</dd> <dt>"subdomains":</dt><dd>An array containing the claimed subdomains, as dot-separated names with the parent suffix already removed, in canonical order. To claim the entire parent zone, the claimed subdomain will be represented as an asterisk symbol"*".</li> <li>"algorithm": The("*").</dd> <dt>"algorithm":</dt><dd>The hashalgorithm isalgorithm, represented by its "Mnemonic" string from theZONEMD"ZONEMD HashAlgorithmsAlgorithms" registry(<relref(<xref target="RFC8976"section="5.2" displayFormat="comma"/>).</li> <li>"salt": Thesection="5.3" sectionFormat="of"/>).</dd> <dt>"salt":</dt><dd>The salt, encoded in base64url <xreftarget="RFC4648"/>.</li> </ul>target="RFC4648"/>.</dd> </dl> <t>Future specifications aiming to define new keys will need to add them to the IANA registry defined in <xreftarget="IANA"/>.target="new-split-claims-registry"/>. DNS client implementations will ignore any keys they don't recognize but may also reportaboutunknown keys.</t> </section> </section> </section> <section anchor="validating"> <name>Validating Authority over Local Domain Hints</name> <t>To validate anAuthorization Claimauthorization claim provided by the network, DNS clients <bcp14>MUST</bcp14> resolve the Verification Record for that name. If the resolution produces anRRSetRRset containing the expected token for thisClaim,claim, the client <bcp14>SHALL</bcp14> regard the named resolver as authoritative for the claimed subdomains. Clients <bcp14>MUST</bcp14> ignore any unrecognized keys in the Verification Record.</t> <t>Each validation of authority applies only to a specific ADN. If a network offers multiple encrypted resolvers, each claimed subdomain may be authorized for a distinct subset of the network-provided resolvers.</t> <t>A zone is termed a "Validated Split-Horizon zone" after successful validation using a "tamperproof" DNS resolution method, i.e., a method that is not subject to interference by the local network operator. Two possible tamperproof resolution methods are presented below.</t> <section anchor="validating-external"> <name>Using aPre-configuredPreconfigured External Resolver</name> <t>This method applies only if the client is already configured with a default resolution strategy that sends queries to a resolver outside of the network overaan encrypted transport. That resolution strategy is considered"tamperproof"tamperproof because any actor who could modify the response could already modify all of the user's other DNS responses. If the client cannot obtain a response from the external resolver within a reasonabletimeout period,timeframe, itMUST<bcp14>MUST</bcp14> consider the verification process to have failed.</t> <t>To ensure that this assumption holds, clients <bcp14>MUST NOT</bcp14> relax the acceptance rules they would otherwise apply when using this resolver. For example, if the client would check the Authenticated Data (AD) bit or validate RRSIGs locally when using this resolver, it must also do so when resolving TXT records for this purpose.Alternatively, aThe clientmight<bcp14>MAY</bcp14> perform DNSSEC validation for the verification query even if it has disabled DNSSEC validation for other DNS queries.</t> </section><!-- validating-external --><section anchor="validating-dnssec"> <name>Using DNSSEC</name> <t>The client resolves the Verification Record using any resolution method of its choice (e.g., querying one of the network-provided resolvers, performing iterative resolutionlocally),locally) and performs full DNSSEC validation locally <xref target="RFC6698"/>. The result is processed based on its DNSSEC validation state(<relref(<xref section="4.3" target="RFC4035"displayFormat="comma"/>):sectionFormat="of"/>): </t><ul empty="true"> <li><strong>Secure</strong>: The<dl newline="false" spacing="normal"> <dt><strong>Secure</strong>:</dt><dd>The response is used forvalidation.</li> <li><strong>Bogus</strong>validation.</dd> <dt><strong>Bogus</strong> or<strong>Indeterminate</strong>: The<strong>Indeterminate</strong>:</dt><dd>The response isrejectedrejected, and validation is considered to havefailed.</li> <li><strong>Insecure</strong>: Thefailed.</dd> <dt><strong>Insecure</strong>:</dt><dd>The client <bcp14>SHOULD</bcp14> retry the validation process using a different method, such as theonemethod described in <xref target="validating-external"/>, to ensure compatibility with unsigned names. If the client chooses not to retry (e.g., no configured policy to validate the authorization claim using an external resolver), itMUST<bcp14>MUST</bcp14> consider validation to havefailed.</li> </ul>failed.</dd> </dl> </section><!-- validating-DNSSEC --></section><!-- Validating --><section> <name>Delegating DNSSECacrossAcross Split DNS Boundaries</name> <t>When the local zone can be signed with globally trusted keys for the parent zone, support for DNSSEC can be accomplishedsimplyby simply placing a zone cut at the parent zone and including a suitable DS record for the local resolver's DNSKEY. Zones in this configuration appear the same to validating stubs whether or not they implement this specification.</t> <t>To enable DNSSEC validation of local DNS names without requiring the local resolver to hold DNSSEC private keys that are valid for the parent zone, parent zones <bcp14>MAY</bcp14> add a "ds=..." key to the Verification Record whose value is the RDATA of a single DS record,base64url-encoded.encoded in base64url. This DS record authorizes a DNSKEY whoseOwner Nameowner name is "resolver.arpa."</t> <t>To validate DNSSEC, the client first fetches and validates the Verification Record. If it is valid and contains a "ds" key, the client <bcp14>MAY</bcp14> send a DNSKEY query for "resolver.arpa." to the local encrypted resolver. At least one resulting DNSKEYRRResource Record (RR) <bcp14>MUST</bcp14> match the DS RDATA from the "ds" key in the Verification Record. All local resolution results for subdomains in this claim <bcp14>MUST</bcp14> offer RRSIGs that chain to a DNSKEY whose RDATA is identical to one of these approved DNSKEYs.</t> <t>The "ds" key <bcp14>MAY</bcp14> appear multiple times in a single Verification Record, in order to authorize multiple DNSKEYs for this local encryptedresolver. If the "ds" key is not present in a valid Verification Record, the client <bcp14>MUST</bcp14> disable DNSSEC validation when resolving the claimed subdomains via this local encryptedresolver.</t> <t>Note thatin this configuration,when the local resolver does not have a globally trusted DNSKEY, any claimed subdomainsMUST<bcp14>MUST</bcp14> be marked as unsigned in the public DNS. Otherwise, local resolution results would be rejected by validating stubs that do not implement this specification.</t> <figure> <name>ExampleuseUse of "ds=..."</name><sourcecode><sourcecode type="dns-rr"> ;; Parent zone. $ORIGIN parent.example. ; Parent zone's publicKSKKey Signing Key (KSK) ; andZSKZone Signing Key (ZSK). @ IN DNSKEY 257 3 5 ABCD...= @ IN DNSKEY 256 3 5 DCBA...= ; Verification Record containing DS RDATA for the local ; resolver's KSK. This is an ordinary public TXT record, ; secured by RRSIGs from the public ZSK. resolver.example._splitdns-challenge IN TXT "token=abc...,ds=QWE..." ; NSEC record indicating that unsigned delegations are permitted at ; this subdomain. This is required for compatibility withnon-split-aware; non-split-aware validating stub resolvers. If the claimed label is ; confidential, the;parent zone can conceal it using NSEC3 (with or ; without "opt-out"). @ IN NSEC subdomain.parent.example. NS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Local zone, claiming "subdomain.parent.example". ; The local resolver's KSK, validated by the Verification Record. ; It may not have a corresponding RRSIG. resolver.arpa. IN DNSKEY 257 3 5 ASDF...= ; Each claimed subdomain duplicates the local resolver's KSK at its ; zone apex and uses it to sign the ZSK. subdomain.parent.example. IN DNSKEY 257 3 5 ASDF...= subdomain.parent.example. IN DNSKEY 256 3 5 FDSA...= subdomain.parent.example IN RRSIG DNSKEY 5 3 ... \ (KSK key tag) subdomain.parent.example. ... subdomain.parent.example. IN AAAA 2001:db8::17 subdomain.parent.example IN RRSIG AAAA 5 3 ... \ (ZSK key tag) subdomain.parent.example. ... deeper.subdomain.parent.example. IN AAAA 2001:db8::18 deeper.subdomain.parent.example IN RRSIG AAAA 5 3 ... \ (ZSK key tag) subdomain.parent.example. ... </sourcecode></figure> </section> <section><name>Examples of<name>Example Split-Horizon DNS Configuration</name><t>Two examples are shown below. The first example shows a company with an internal-only DNS server that claims the entire zone for that company (e.g., <tt>*.example.com</tt>). In the second example, the internal servers resolves only a subdomain of the company's zone (e.g., <tt>*.internal.example.com</tt>).</t> <section anchor="internal-only"> <name>Split-Horizon Entire Zone</name><t>Consider an organization that operates"example.com","example.com" and runs a different version of its global domain on its internal network.</t> <t>First, the host and network both need to support one of the discovery mechanisms described in <xref target="establishing"/>. <xref target="fig-learn"/> shows discovery using information from the DNR and the PvD.</t> <t>Validation is thenperfomedperformed using either <xref target="example-verify-external">an external resolver</xref> or <xref target="example-verify-dnssec">DNSSEC</xref>.</t><ul empty="true"> <li><strong>Steps 1-2</strong>: The<dl newline="false" spacing="normal"> <dt><strong>Steps 1-2</strong>:</dt><dd>The client determines the network's DNS server(dns.example.net)(<tt>dns.example.net</tt>) andProvisioning Domain (pvd.example.com)PvD ID (<tt>pvd.example.com</tt>) using<xref target="RFC9463">DNR</xref>DNR and<xref target="RFC8801">PvD</xref>, usinga PvD, along with one of the following: DNR Router Solicitation, DHCPv4, orDHCPv6.</li> <li><strong>Step 3-5</strong>: TheDHCPv6.</dd> <dt><strong>Steps 3-5</strong>:</dt><dd>The client connects todns.example.net<tt>dns.example.net</tt> using an encrypted transport as indicated in <xref target="RFC9463">DNR</xref>, authenticating the server to its name using TLS(<relref(<xref target="RFC8310" section="8"displayFormat="comma"/>),sectionFormat="of"/>), and sends it a query for the address of<tt>pvd.example.com</tt>.</li> <li><t><strong>Steps 6-7</strong>: The<tt>pvd.example.com</tt>.</dd> <dt><strong>Steps 6-7</strong>:</dt><dd><t>The client connects to the PvD server, validates its certificate, and retrieves theprovisioning domain JSON informationPvD Additional Information indicated by the associated PvD. ThePvDJSON object contains:</t> <sourcecode type="json">{ "identifier": "pvd.example.com", "expires": "2025-05-23T06:00:00Z", "prefixes": ["2001:db8:1::/48", "2001:db8:4::/48"], "splitDnsClaims": [{ "resolver": "dns.example.net", "parent": "example.com", "subdomains": ["*"], "algorithm": "SHA384", "salt": "abc...123" }] }</sourcecode> <t>The JSON keys "identifier", "expires", and "prefixes" are defined in <xreftarget="RFC8801"/>.</t></li> </ul>target="RFC8801"/>.</t></dd> </dl> <figure anchor="fig-learn"> <name>An Example of Learning Local Claims of DNS Authority</name> <artwork><![CDATA[ +---------+ +--------------------+ +------------+ +--------+ | Client | | Network's | | Network | | Router | | | | Encrypted Resolver | | PvD Server | | | +---------+ +--------------------+ +------------+ +--------+ | | | | | Router Solicitation or | | | | DHCPv4/DHCPv6 (1) | | | |----------------------------------------------------------->| | | | | | Response with DNR ADN & | | | | PvD FQDN (2) | | | |<-----------------------------------------------------------| | ----------------------------\ | | | |-| now knows DNR ADN & | | | | | | PvD FQDN | | | | | |---------------------------/ | | | | | | | | TLS connection to dns.example.net (3) | | |------------------------------------>| | | | ---------------------------\ | | | |-| validate TLS certificate | | | | | |--------------------------/ | | | | | | | | resolve pvd.example.com (4) | | | |------------------------------------>| | | | | | | | A or AAAA records (5) | | | |<------------------------------------| | | | | | | | https://pvd.example.com/.well-known/pvd (6) | | |---------------------------------------------->| | | | | | | 200 OK (JSON Additional Information) (7) | | |<----------------------------------------------| | | ----------------------------------\ | | | |-| {..., "splitDnsClaims": [...] } | | | | | |---------------------------------/ | | | ]]></artwork> </figure> <section anchor="example-verify-external"> <name>Verification Using an External Resolver</name> <t><xref target="fig-learn2"/> shows the steps performed to verify the local claims of DNS authority using an external resolver.</t><ul empty="true"> <li><strong>Steps 1-2</strong>: The<dl newline="false" spacing="normal"> <dt><strong>Steps 1-2</strong>:</dt><dd>The client uses an encrypted DNS connection to an external resolver to issue TXT queries for the Verification Records. The TXT lookup returns a token that matches theclaim.</li> <li><strong>Step 3</strong>: Theclaim.</dd> <dt><strong>Step 3</strong>:</dt><dd>The client has validated that <tt>example.com</tt> has authorized <tt>dns.example.net</tt> to serve <tt>example.com</tt>. When the client connects using an encrypted transport as indicated in <xref target="RFC9463">DNR</xref>, it will authenticate the server to its name using TLS(<relref(<xref target="RFC8310" section="8"displayFormat="comma"/>),sectionFormat="of"/>) and send queries to resolve any names that fall within the claimedzones.</li> </ul>zones.</dd> </dl> <figure anchor="fig-learn2"> <name>Verifyingclaims usingClaims Using anexternal resolver</name>External Resolver</name> <artwork><![CDATA[ +---------+ +--------------------+ +----------+ | Client | | Network's | | External | | | | Encrypted Resolver | | Resolver | +---------+ +--------------------+ +----------+ | | | | TLS connection | | |--------------------------------------------------->| | ---------------------------\ | | |-| validate TLS certificate | | | | |--------------------------| | | | | | | TXT? dns.example.net.\ | | | _splitdns-challenge.example.com (1) | | |--------------------------------------------------->| | | | | TXT "token=ABC..." (2) | | |<---------------------------------------------------| | --------------------------------\ | | |-| dns.example.net is authorized | | | | ----------------------\---------| | | |-| finished validation | | | | |---------------------| | | | | | | use dns.example.net when | | | resolving example.com (3) | | |----------------------------------------->| | | | | ]]></artwork> </figure> </section><!-- external --><section anchor="example-verify-dnssec"> <name>VerificationusingUsing DNSSEC</name> <t><xref target="fig-learn3"/> shows the steps performed to verify the local claims of DNS authority using DNSSEC.</t><ul empty="true"> <li><strong>Steps 1-2</strong>: The<dl newline="false" spacing="normal"> <dt><strong>Steps 1-2</strong>:</dt><dd>The DNSSEC-validating client queries thenetworknetwork's encrypted resolver to issue TXT queries for the Verification Records. The TXT lookup will return a signed response containing the expected token. The client then performs full DNSSEC validationlocally.</li> <li><strong>Step 3</strong>: Iflocally.</dd> <dt><strong>Step 3</strong>:</dt><dd>If the DNSSEC validation is successful and the token matches, then thisAuthorization Claimauthorization claim is validated. Once the client connects using an encrypted transport as indicated in <xref target="RFC9463">DNR</xref>, it will authenticate the server to its name using TLS(<relref(<xref target="RFC8310" section="8"displayFormat="comma"/>),sectionFormat="of"/>) and send queries to resolve any names that fall within the claimedzones.</li> </ul>zones.</dd> </dl> <figure anchor="fig-learn3"> <name>An Example of Verifying ClaimsusingUsing DNSSEC</name> <artwork><![CDATA[ +---------+ +--------------------+ | Client | | Network's | | | | Encrypted Resolver | +---------+ +--------------------+ | | | DNSSEC OK (DO), TXT? dns.example.net.\ | | _splitdns-challenge.example.com (1) | |-------------------------------------------------------------->| | | | TXT token=DEF..., Signed Answer (RRSIG) (2) | |<--------------------------------------------------------------| | -------------------------------------\ | |-| DNSKEY+TXT matches RRSIG, use TXT | | | |------------------------------------| | | --------------------------------\ | |-| dns.example.net is authorized | | | |-------------------------------| | | ----------------------\ | |-| finished validation | | | |---------------------| | | | | use encrypted network-designated resolver for example.com (3) | |-------------------------------------------------------------->| | | ]]></artwork> </figure> </section> </section></section><sectionanchor="operatonal">anchor="operational"> <name>Operational Efficiency in Split-Horizon Deployments</name> <t>In many split-horizon deployments, all non-public domain names are placed in a separate child zone (e.g., <tt>internal.example.com</tt>). In this configuration, the message flow is similar to the flow described in <xreftarget="internal-only"/>,target="example-verify-external"/>, except that queries for hosts not within the subdomain (e.g., <tt>www.example.com</tt>) are sent to the external resolver rather than the resolver forinternal.example.com.</t><tt>internal.example.com</tt>.</t> <t>As specified in <xreftarget="internal-only"/>,target="example-verify-external"/>, the internal DNS server will need a certificate signed by a Certification Authority (CA) trusted by the client.</t> <t>Although placing internal domains inside a child domain isunnecessarynot necessary to prevent leakage, such placement reduces the frequency of changes to the VerificationRecord, thisRecord. This document recommends that the internal domains be kept in a child zone of the local domain hints advertised by the network. For example, if the PvD "dnsZones" entry is "internal.example.com" and the network-provided DNS resolver is "ns1.internal.example.com", the network operator can structure the internal domain names as "private1.internal.example.com", "private2.internal.example.com", etc. The network-designated resolver will be used to resolve the subdomains of the local domain hint "*.internal.example.com".</t> </section> <section anchor="vpn"> <name>Validation with IKEv2</name> <t>When the endpoint is using a VPN tunnel and the tunnel is IPsec, the encrypted DNS resolver hosted by the VPN service provider can be securely discovered by the endpoint using theENCDNS_IP*_*ENCDNS_IP* IKEv2 Configuration Payload Attribute Types defined in <xref target="RFC9464"/>. The VPN client can use the mechanism defined inSection 6<xref target="validating"/> to validate that the discovered encrypted DNS resolver is authorized to answer for the claimed subdomains.</t> <t>Other VPN tunnel types have similar configurationcapabilities,capabilities. Note that those capabilities are notdetailed here.</t>discussed in this document.</t> </section> <section anchor="aclaim"> <name>Authorization Claim Update</name> <t>Averification recordVerification Record is only valid until it expires. Expiry occurs when the Time To Live (TTL) or DNSSEC signature validity period ends. Shortly beforeverification recordVerification Record expiry, clientsMUST<bcp14>MUST</bcp14> fetch theverification recordsVerification Records again and repeat the verification procedure. This ensures the availability of updated and validverification records.</t>Verification Records.</t> <t>A newverification recordVerification Record must be added to the RRset before the correspondingAuthorization Claimauthorization claim is updated. After the claim is updated, the following procedures can be used:</t> <ol> <li>DHCP reconfiguration can be initiated by a DHCP server that has previously communicated with a DHCP client and negotiated for the DHCP client to listen for Reconfigure messages, to prompt the DHCPclients forclient to dynamicallyrequestingrequest the updatedAuthorization Claim.authorization claim. This process avoids the need for the client to wait for its current lease to complete and request a new one, enabling the lease renewal to be driven by the DHCP server.</li> <li>The sequence number in the RA PvDoption willOption can be incremented, requiring clients to fetch PvDadditional informationAdditional Information from the HTTPS server due to the updated sequence number in the new RA(<relref(<xref target="RFC8801" section="4.1"displayFormat="comma"/>).</li>sectionFormat="of"/>).</li> <li>The oldverification recordVerification Record needs to be maintained until the DHCP leasetimeor PvD Additional Informationexpiry.</li>expires.</li> </ol> </section> <section anchor="Security"> <name>Security Considerations</name> <t>TheAuthentication Domain NamesADNs of authorized local encrypted resolvers are revealed in theOwner Namesowner names of Verification Records. This makes it easier for domain owners to understand which resolvers they are currently authorizing to implementSplitsplit DNS. However, this could create a confidentiality issue if the local encrypted resolver's name contains sensitive information or is part of a secret subdomain. To mitigate the impact of such leakage, local resolvers should be given names that do not reveal any sensitive information.</t> <t> The security properties of hashing algorithms are not fixed. AlgorithmAgilityagility (see <xref target="RFC7696"/>) is achieved by providing implementations with the flexibility to choose hashing algorithms from theZONEMD Schemes"ZONEMD Hash Algorithms" registry(<relref(<xref target="RFC8976"section="5.2" displayFormat="comma"/>).</t>section="5.3" sectionFormat="of"/>).</t> <t>The entropy of a salt depends on a high-qualitypseudo-randompseudorandom number generator. For further discussion on random number generation, see <xref target="RFC4086"/>. The saltMUST<bcp14>MUST</bcp14> be regenerated whenever the authorization claim is updated.</t> </section> <section anchor="IANA"> <name>IANA Considerations</name> <section><name>DHCP Split DNS<name>New DHCP AuthenticationAlgorithm</name>Algorithm for Split DNS</name> <t>IANAis requested to addhas added the following entry to the "Protocol Name Space Values" registryonin the "Dynamic Host Configuration Protocol (DHCP) Authentication Option Name Spaces"page:</t> <ul> <li>Value: $TBD1</li> <li>Description: Split-horizon DNS</li> <li>Reference: (This Document)</li> </ul>registry group:</t> <dl newline="false" spacing="normal"> <dt>Value:</dt><dd>4</dd> <dt>Description:</dt><dd>Split-horizon DNS</dd> <dt>Reference:</dt><dd>RFC 9704</dd> </dl> </section> <section><name>Provisioning Domains Split DNS<name>New PvD AdditionalInformation</name>Information Type for Split DNS</name> <t>IANAis requested to addhas added the following entry to the "Additional Information PvD Keys" registryunderin the "Provisioning Domains (PvDs)" registry group:</t><ul> <li>JSON key: "splitDnsClaims"</li> <li>Description: "Verifiable<dl newline="false" spacing="normal"> <dt>JSON key:</dt><dd>splitDnsClaims</dd> <dt>Description:</dt><dd>Verifiable locally serveddomains"</li> <li>Type: Array of Objects</li> <li><t>Example: </t><sourcecodedomains</dd> <dt>Type:</dt><dd>Array of Objects</dd> <dt>Example:</dt><dd><sourcecode type="json">[{ "resolver": "dns.example.net", "parent": "example.com", "subdomains": ["sub"], "algorithm": "SHA384", "salt": "abc...123"}]</sourcecode></li> <li>Reference: (This document)</li> </ul>}]</sourcecode></dd> <dt>Reference:</dt><dd>RFC 9704</dd> </dl> </section><section><section anchor="new-split-claims-registry"> <name>New PvD Split DNS Claims Registry</name> <t>IANAis requested to createhas created a new registry called "PvD Split DNS Claims"Registry,within the "Provisioning Domains (PvDs)" registrypage.group. This new registry reserves JSON keys for use in sub-dictionaries under the splitDnsClaims JSON key. The initial contents of this registry, as discussed in <xref target="splitclaims"/>, are listed below andwill behave been added to theIANAregistry:</t><figure anchor="fig-split-claims"><table anchor="split-claims"> <name>Split DNS Claims</name><artwork><![CDATA[ +------------+-----------------------+---------+-----------------+-----------+ | JSON key | Description | Type | Example | Reference | +------------+-----------------------+---------+-----------------+-----------+ | resolver | The<thead> <tr> <th>JSON key</th> <th>Description</th> <th>Type</th> <th>Example</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>resolver</td> <td>The Authentication| String |"dns.example.net"| [RFCXXXX] | | |DomainName | | | | | | | | | | | parent | TheName</td> <td>String</td> <td>"dns.example.net"</td> <td>RFC 9704</td> </tr> <tr> <td>parent</td> <td>The parent zonename | String | "example.com" | [RFCXXXX] | | | | | | | | subdomains | Anname</td> <td>String</td> <td>"example.com"</td> <td>RFC 9704</td> </tr> <tr> <td>subdomains</td> <td>An array containing| Array of| ["sub"] | | | |the claimedsubdomains| Strings | | [RFCXXXX] | | | | | | | | algorithm | Thesubdomains</td> <td>Array of Strings</td> <td>["sub"]</td> <td>RFC 9704</td> </tr> <tr> <td>algorithm</td> <td>The hashalgorithm | String | "SHA384" | [RFCXXXX] | | | | | | | |algorithm</td> <td>String</td> <td>"SHA384"</td> <td>RFC 9704</td> </tr> <tr> <td>salt</td> <td>The salt| The salt (base64url) | String | "abc...123" | [RFCXXXX] | | | | | | | +------------+-----------------------+---------+-----------------+-----------+ ]]></artwork> </figure>(base64url)</td> <td>String</td> <td>"abc...123"</td> <td>RFC 9704</td> </tr> </tbody> </table> <t>The keys defined in this document are mandatory. Any new assignments of keys will be considered as optional for the purpose of the mechanism described in this document.</t> <t>New assignments in the "PvD Split DNSClaims Registry"Claims" registry will be administered by IANA through Expert Review <xref target="RFC8126"/>. Experts are requested to ensure that defined keys do not overlap in names or semantics.</t> <section> <name>Guidelines for the Designated Experts</name> <t>It is suggested that multiple designated experts be appointed for registry change requests.</t> <t>Criteria that should be applied by the designated experts include determining whether the proposed registration duplicates existing entries and whether the registration description is clear and fits the purpose of this registry.</t> <t>Registration requests are evaluated within a three-week review period on the advice of one or more designated experts. Within the review period, the designated experts will either approve or deny the registration request, communicating this decision to IANA. Denials should include an explanation and, if applicable, suggestions as to how to make the request successful.</t> </section> </section> <section> <name>DNS Underscore Name</name> <t>IANAis requested to addhas added the following entry to the "Underscored and Globally Scoped DNS Node Names" registryunderin the "Domain Name System (DNS) Parameters" registry group:</t><ul> <li>RR Type: TXT</li> <li>_NODE NAME: _splitdns-challenge</li> <li>Reference: (This document)</li> </ul><dl newline="false" spacing="normal"> <dt>RR Type:</dt><dd>TXT</dd> <dt>_NODE NAME:</dt><dd>_splitdns-challenge</dd> <dt>Reference:</dt><dd>RFC 9704</dd> </dl> </section> </section><section> <name>Acknowledgements</name> <t>Thanks to Mohamed Boucadair, Jim Reid, Tommy Pauly, Paul Vixie, Michael Richardson, Bernie Volz, Éric Vyncke and Vinny Parla for the discussion and comments.</t> <t>Thanks to Tianran Zhou for the opsdir review, Anthony Somerset for the dnsdir review, Watson Ladd for the secdir review, Bob Halley for the intdir review and Mallory Knodel for the genart review.</t> <t>Thanks to Mohamed Boucadair for the Shepherd review.</t> </section></middle><!-- *****BACK MATTER ***** --><back> <displayreference target="I-D.ietf-dnsop-domain-verification-techniques" to="DOMAIN-VERIFICATION-TECHNIQUES"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.2119.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.3118.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3118.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.2131.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2131.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4034.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4034.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8174.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8801.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8801.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.6698.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6698.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4035.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4035.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8976.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8976.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8415.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8415.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.3396.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3396.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.6761.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6761.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8126.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9525.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9525.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4086.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4086.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4648.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4648.xml"/> </references> <references> <name>Informative References</name> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9499.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9499.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8598.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8598.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.7686.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7686.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8806.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8806.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8106.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8106.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4702.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4702.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.4704.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4704.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.6731.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6731.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.5986.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5986.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8310.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8310.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.7696.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7696.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.7858.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7858.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8484.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8484.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9250.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9250.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9364.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9364.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.6234.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6234.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.6762.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6762.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.8792.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8792.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9463.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9463.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9464.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9464.xml"/> <xi:includehref="https://www.rfc-editor.org/refs/bibxml/reference.RFC.9462.xml"/>href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9462.xml"/> <!-- draft-ietf-dnsop-domain-verification-techniques (I-D Exists) --> <xi:includehref="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-dnsop-domain-verification-techniques.xml"/>href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-dnsop-domain-verification-techniques.xml"/> </references> </references> <section numbered="false"> <name>Acknowledgements</name> <t>Thanks to <contact fullname="Mohamed Boucadair"/>, <contact fullname="Jim Reid"/>, <contact fullname="Tommy Pauly"/>, <contact fullname="Paul Vixie"/>, <contact fullname="Michael Richardson"/>, <contact fullname="Bernie Volz"/>, <contact fullname="Éric Vyncke"/>, and <contact fullname="Vinny Parla"/> for the discussion and comments.</t> <t>Thanks to <contact fullname="Tianran Zhou"/> for the opsdir review, <contact fullname="Anthony Somerset"/> for the dnsdir review, <contact fullname="Watson Ladd"/> for the secdir review, <contact fullname="Bob Halley"/> for the intdir review, and <contact fullname="Mallory Knodel"/> for the genart review.</t> <t>Thanks to <contact fullname="Mohamed Boucadair"/> for the Shepherd review.</t> </section> </back> </rfc>