% \iffalse meta-comment
% vim: tw=80 spl=en
%
%% File: statistics.dtx (C) Copyright 2014-2019 RIVAUD Julien
%%
%% It may be distributed and/or modified under the conditions of the
%% General Public License (GPL), either version 3 of this
%% license or (at your option) any later version.
%
%<*driver|package>
% The version of expl3 required is tested as early as possible, as
% some really old versions do not define \ProvidesExplPackage.
\NeedsTeXFormat{LaTeX2e}[1995/12/01]
\RequirePackage{expl3}[2018/06/19]
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\usepackage{statistics}
\usepackage{fontspec}
\usepackage{xparse}
\usepackage{xcolor}
\usepackage{geometry}
\usetikzlibrary{patterns}
\geometry{
    a4paper,
    vmargin=2.5cm, right=1.5cm, textwidth=385pt,
    marginparwidth=21cm-1.5cm-0.5cm-0.4cm-385pt,
    %marginparsep=0.4cm,
}
%</driver>
%<*driver|package>
\def\ExplFileName{statistics}
\def\ExplFileDescription{Compute and typeset statistics table and graphics}
\def\ExplFileDate{2019/09/29}
\def\ExplFileVersion{2.2}
%</driver|package>
%<*driver>
\ExplSyntaxOn
\let\tltostr\tl_to_str:N
\NewDocumentEnvironment{demo}{}{
    \char_set_catcode_other:N \\
    \peek_meaning:NTF [ {
        \__statsdocs_demo_begin:
    }{
        \__statsdocs_demo_begin: []
    }
}{
    \mode_if_vertical:TF {
        \penalty 0
    }{
        \par\nobreak
    }
    \skip_vertical:N \abovedisplayskip
    \noindent\leavevmode
    \hbox_set:Nn \l_tmpb_box {
    \colorbox{yellow!5!white}{
        \parbox{\linewidth}{
            \raggedright
            \tl_use:N \l_tmpb_tl
        }
    }
    }
    \hbox_set:Nn \l_tmpa_box {
    \colorbox{blue!5!white}{
        \parbox{\linewidth}{
            \ttfamily
            \raggedright
            \tl_use:N \l_tmpa_tl
        }
    }
    }
    \fp_set:Nn \l_tmpa_fp {
        round(
            3000 *
            \dim_ratio:nn { \box_ht:N \l_tmpb_box } { \box_ht:N \l_tmpa_box }
        )
    }
    \box_use:N \l_tmpa_box \\ \box_use:N \l_tmpb_box
    \int_set:Nn \interlinepenalty {\fp_to_int:N \l_tmpa_fp}
    \par
    \penalty 0
    \skip_vertical:N \belowdisplayskip
}
\cs_new_protected:Nn \__statsdocs_demo_begin: {
    \char_set_catcode_escape:N \\
    \__statsdocs_demo_begin:w
}
\NewDocumentCommand \__statsdocs_demo_begin:w { +O{} } {
    \char_set_catcode_other:N \^^M
    \char_set_catcode_other:n {32}
    \char_set_catcode_other:N \#
    \char_set_catcode_other:N \\
    \char_set_catcode_other:N \{
    \char_set_catcode_other:N \}
    \__statsdocs_read_demo:w
}
\group_begin:
\char_set_catcode_group_begin:N \[
\char_set_catcode_group_end:N \]
\char_set_catcode_escape:N \|
\char_set_catcode_other:N \{
\char_set_catcode_other:N \}
\char_set_catcode_other:N \\
|cs_new_protected:Npn |__statsdocs_read_demo:w #1 \end{demo}[
    |__statsdocs_do_demo:n [#1]
]
|group_end:
\cs_new_protected:Nn \__statsdocs_do_demo:n {
    \str_set:Nn \l_tmpa_str {#1}
    \tl_trim_spaces:N \l_tmpa_str
    \str_set:Nx \l_tmpb_str {\char_generate:nn{`\^^M}{12}}
    \str_if_eq:eeT \l_tmpb_str { \str_head:N \l_tmpa_str } {
        \str_set:Nx \l_tmpa_str { \str_tail:N \l_tmpa_str }
    }
    \tl_reverse:N \l_tmpa_str
    \str_if_eq:eeT \l_tmpb_str { \str_head:N \l_tmpa_str } {
        \str_set:Nx \l_tmpa_str { \str_tail:N \l_tmpa_str }
    }
    \tl_reverse:N \l_tmpa_str
    \tl_set:Nx \l_tmpa_tl {~\l_tmpa_str}
    \exp_args:NNV \tl_replace_all:Nnn \l_tmpa_tl \l_tmpb_str {\par}
    \tl_set:Nx \l_tmpb_tl {\char_generate:nn{32}{12}}
    \exp_args:NNnV \tl_replace_all:Nnn \l_tmpa_tl {~} \l_tmpb_tl
    \exp_args:NNnV \tl_set_rescan:Nnn \l_tmpb_tl {
        \char_set_catcode_escape:N \\
        \char_set_catcode_space:n {32}
        \char_set_catcode_parameter:N \#
        \char_set_catcode_end_line:N \^^M
        \char_set_catcode_group_begin:N \{
        \char_set_catcode_group_end:N \}
    } \l_tmpa_str
    \end{demo}
}
\ExplSyntaxOff
\NewDocumentEnvironment{key}{}{\begin{variable}}{\end{variable}}
\begin{document}
  \DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
%   The \textsf{\ExplFileName} package\\ \ExplFileDescription^^A
%   \thanks{This file describes v\ExplFileVersion,
%     last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
%  Julien ``\_FrnchFrgg\_'' \textsc{Rivaud}\thanks
%    {^^A
%      E-mail:
%        \href{mailto:frnchfrgg@free.fr}
%             {frnchfrgg@free.fr}^^A
%    }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \tableofcontents
%
% \begin{documentation}
%
% \section{\pkg{\ExplFileName} documentation}
%
% The \pkg{\ExplFileName} package can compute and typeset statistics like
% frequency tables, cumulative distribution functions (increasing or decreasing,
% in frequency or absolute count domain), from the counts of individual values,
% or ranges, or even the raw value list with repetitions.
%
% It can also compute and draw a bar diagram in case of individual values, or,
% when the data repartition is known from ranges, an histogram or the continuous
% cumulative distribution function.
%
% You can ask \pkg{\ExplFileName} to display no result, selective results or all
% of them. Similarly \pkg{\ExplFileName} can draw only some parts of the graphs.
% Every part of the generated tables or graphics is customizable.
%
% \subsection{Specifying and converting data}
%
% To compute and typeset things, \pkg{\ExplFileName} starts from what this
% documentation calls a \meta{data source}. Such a source can take two forms:
% \begin{itemize}
%   \item A comma-separated list of \meta{value} |[=| \meta{count} |]|;
%   \item A \cs{\meta{macro}} containing such a list.
% \end{itemize}
%
% If \meta{count} is missing, it defaults to~$1$. \emph{A priori} the
% \meta{value}s need not be unique nor sorted, but \cs{StatsTable} and
% \cs{StatsGraph} expect them to be. If you want your data to be in the form of
% a raw list of unsorted and repeated values, you can thus use the following
% command to convert the data to a form suitable for \cs{StatsTable} and
% \cs{StatsGraph}:
%
% \begin{function}{\StatsSortData}
%   \begin{syntax}
%       \cs{StatsSortData} \cs{\meta{destination}} = \marg{data source}
%   \end{syntax}
%   This command expect each \meta{value} in the \meta{data source} to be
%   convertible to a floating point number (as understood by \pkg{l3fp} from the
%   \LaTeX3 kernel). It defines \cs{\meta{destination}} to hold an equivalent
%   data source, where \meta{value}s are sorted in increasing order, and
%   \meta{count}s are consolidated. As for all other \pkg{\ExplFileName}
%   commands, \meta{data source} can be either given directly between braces, or
%   as a \cs{\meta{macro}} which contains the list.
% \end{function}
%
% \begin{demo}
% \StatsSortData \mydata = { 2, 11=8, 6=3, 2=2, 11=1 }
% \def \rawdata { 2=2, 11=9, 6, 2, 6, 6 }
% \StatsSortData \yourdata = \rawdata
% mydata contains [\mydata]\\
% yourdata contains [\yourdata]
% \end{demo}
%
% The \cs{StatsTable} command will always assume that the \meta{data source} is
% sorted and will not try to parse the \meta{value}s. On the contrary,
% \cs{StatsGraph} \emph{will} parse each \meta{value}, and will act differently
% depending on whether every \meta{value} is a \meta{range} or the form
% \hbox{\cs{IN} \meta{|[| or |]|} \meta{min} |;| \meta{max} \meta{|[| or |]|}},
% or not.
%
% If your \meta{data source} is not given in ranges, but you want to count the
% values falling in each \meta{range} of a list you can use:
%
% \begin{function}{\StatsRangeData}
%   \begin{syntax}
%\cs{StatsSortData}\
%\cs{\meta{destination}}\
%=\
%\marg{data source}\
%(\meta{range list})
%   \end{syntax}
%   This command expect each \meta{value} in the \meta{data source} to be
%   convertible to a floating point number (as understood by \pkg{l3fp} from the
%   \LaTeX3 kernel). It also expects \meta{range list} to be a comma-separated
%   list of \meta{range}s, and will define \cs{\meta{destination}} to a
%   \meta{data source} whose \meta{value}s are the said \meta{range}s and whose
%   counts are, well\dots\ the number of floating point values that lie in those
%   \meta{range}s.
%
%   \cs{StatsRangeData} does not need the \meta{range}s to be sorted, nor even
%   disjoint, but in that case the behavior of \cs{StatsGraph} is unspecified.
% \end{function}
%
% Here is an example\footnote{The \cs{tltostr} command is defined in this
% documentation to be an alias for the \LaTeX3 command \cs{tl_to_str:N} which is
% equivalent to \cs{detokenize}\cs{expandafter}|\{|\cs{\meta{macro}}|\}|.}:
% \begin{demo}
% \StatsRangeData \facebook = { 0, 1, 1.5, 1.5, 2, 3, 2.4, 2, 2.4=5,
%                                3, 4=10, 5=6, 6=9, 6.5=5, 7, 7.1, 7.2,
%                                7.3, 7.4, 7.5, 7.6, 7.7, 7, 7, 8, 8, 8,
%                                9=5, 12=12}
%                               (\IN[0;1;[, \IN[1;2;[, \IN[2;4;[,
%                               \IN[4;7;[, \IN[7;10;[, \IN[10;14;[)
% \tltostr \facebook
% \end{demo}
% \def \facebook {
%   \IN[0;1;[ = 1, \IN[1;2;[ = 3, \IN[2;4;[ = 10,
%   \IN[4;7;[ = 30, \IN[7;10;[ = 18, \IN[10;14;[ = 12
% }
%
% This data source will be used throughout the documentation.
% \label{def:datasource}
%
% \subsection{Setting options}
%
% \begin{function}{\statisticssetup}
% \begin{syntax}
% \cs{statisticssetup} \oarg{module} \marg{options}
% \end{syntax}
% This command lets you specify options for several tables or graphs. The
% options are set locally to the current group. Options for tables are in the
% |table| \meta{module} and are the same as in the optional arguments of
% \cs{StatsTable}. Options for grapsh are in the |graph| \meta{module} and are
% the same as in the optional arguments of \cs{StatsGraph}. You can also use
% \cs{statisticssetup} without a \meta{module} and prefix all keys by the module
% name and a forward slash.
% % \end{function}
%
% \begin{demo}
% \statisticssetup{table/values=My values}
% \statisticssetup[table]{counts=FooBar}
% \StatsTable \facebook
% \end{demo}
%
% \subsection{Statistics tables}
%
% \subsubsection{\cs{StatsTable} invocation}
%
% To typeset a table full of statistics values, you use the command:
%
% \begin{function}{\StatsTable}
%   \begin{syntax}
%       \cs{StatsTable} \oarg{options_1} \marg{data source} \oarg{options_2}
%   \end{syntax}
%   \meta{options_1} and \meta{options_2} are both optional and taken into
%   account. You will probably not use both at the same time even if
%   \cs{StatsTable} will accept it (and apply \meta{options_2} after
%   \meta{options_1}, potentially overriding some settings). The idea is to let
%   you decide where you feel the options should be. I find more logical to
%   specify options after a \cs{macro} data source, but before an inline
%   \marg{data source}. Your mileage may vary.
% \end{function}
%
% If you do not use any option, you only get the line of values\footnote{The
% \cs{facebook} data source is defined on page \pageref{def:datasource}.}:
% \begin{demo}
% \StatsTable \facebook
% \end{demo}
%
% OK, this is ugly. Let us add some reasonable amount of space (a better choice
% would be to use the \pkg{cellprops} package to control the spacing and a lot
% more):
% \begin{demo}
% \setlength\extrarowheight{1.5pt}
% \StatsTable \facebook
% \end{demo}
% \setlength\extrarowheight{1.5pt}
%
% \subsubsection{Choosing and naming rows}
%
% Let's add some rows to the table:
%
% \begin{key}{values, counts, frequencies, icc, icf, dcc, dcf}
% \begin{syntax}
% values $[$ = \meta{row header text} $]$
% counts $[$ = \meta{row header text} $]$
% frequencies $[$ = \meta{row header text} $]$
% icc $[$ = \meta{row header text} $]$
% icf $[$ = \meta{row header text} $]$
% dcc $[$ = \meta{row header text} $]$
% dcf $[$ = \meta{row header text} $]$
% \end{syntax}
% These keys add the corresponding rows to the table. |icc| means increasing
% cumulative counts, |icf| is the same with frequencies, |dcc| is the row of
% decreasing cumulative counts and |dcf| for frequencies. If you omit
% \meta{row header text} the key only activates the corresponding row; if you
% additionally use a value then the first cell of the row will use that value as
% text.
%
% The initial header is |\valuename| for values, |\countname| for counts,
% |\freqname| for frequencies, |\iccname| for icc, |\icfname| for icf,
% |\dccname| for dcc and |\dcfname| for dcf.
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[
%                    values=Time in \si{h},
%                    counts, frequencies, icc, dcc, icf, dcf
%                ]
% \end{demo}
%
% \begin{key}{novalues, nocounts, nofrequencies,
%             noicc, nodcc, noicf, nodcf}
% \begin{syntax}
% novalues, nocounts, nofrequencies, noicc, nodcc, noicf, nodcf
% \end{syntax}
% If you want to \emph{disable} a row you can use the \texttt{no\meta{row}}~key.
% This is particularly useful for the |values| row, but you might need these
% keys to disable a row that you previously enabled with \cs{statisticssetup}.
%
% \begin{demo}
% \StatsTable \facebook [novalues, counts, icc]
% \end{demo}
% \end{key}
%
% \begin{key}{values/header, counts/header, frequencies/header,
%                  icc/header, icf/header, dcc/header, dcf/header}
% \begin{syntax}
% values/header = \meta{row header text}
% counts/header = \meta{row header text}
% frequencies/header = \meta{row header text}
% icc/header = \meta{row header text}
% icf/header = \meta{row header text}
% dcc/header = \meta{row header text}
% dcf/header = \meta{row header text}
% \end{syntax}
% These keys set the corresponding row header text, which will be used as the
% first cell of the row if the row is enabled. These keys does not enable their
% row by themselves, contrary to keys like |values| or |counts|.
%
% The initial header is |\valuename| for values, |\countname| for counts,
% |\freqname| for frequencies, |\iccname| for icc, |\icfname| for icf,
% |\dccname| for dcc and |\dcfname| for dcf.
% \end{key}
%
% \begin{demo}
% \statisticssetup{table/counts/header=People count}
% \StatsTable \facebook[counts, frequencies, icc]
% \end{demo}
%
% \subsubsection{Formatting cells}
%
% \begin{key}[label={table/values/format, table/counts/format,
%   table/frequencies/format, table/icc/format, table/icf/format,
%   table/dcc/format, table/dcf/format}]
%   {values/format, counts/format, frequencies/format,
%   icc/format, icf/format, dcc/format, dcf/format}
% \begin{syntax}
% values/format = \meta{formatting code}
% counts/format = \meta{formatting code}
% frequencies/format = \meta{formatting code}
% icc/format = \meta{formatting code}
% icf/format = \meta{formatting code}
% dcc/format = \meta{formatting code}
% dcf/format = \meta{formatting code}
% \end{syntax}
% Each key in this list takes a value which will be used for each cell in the
% corresponding row. In this value, every occurrence of |#1| will be replaced by
% the content of the cell, which can be further configured by the
% |allcounts/format| key (for the rows |counts|, |icc| and~|dcc|) or the
% |allfreqs/format| key (for the rows |frequencies|, |icf| and~|dcf|). The idea
% is that the latter keys are intended for number formatting (decimal count,
% decimal separator, etc.) while the \texttt{\meta{row}/format} keys are
% intended for font/color changes. In this key, \cs{currentcolumn} expands to
% the data column number, starting from~$1$, to enable different formatting
% depending on the column. These keys are all initially equal to |#1| which means
% they pass-through the content unmodified.
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[
%   counts, icc,
%   icc/format = \colorbox{blue!\currentcolumn 0!white}{#1}
% ]
% \end{demo}
%
% \begin{key}{allcounts/format}
% \begin{syntax}
% allcounts/format = \meta{formatting code}
% \end{syntax}
% This key take some formatting code, in which every occurrence of |#1| will be
% replaced by the integer count\footnotemark in each cell of every row
% containing counts. The initial value is |\num{#1}|, using the \pkg{siunitx}
% package.
%
% The result of this formatting code will then be passed to |counts/format|,
% |icc/format| or |dcc/format| depending on the row, for further parsing and
% formatting.
% \end{key}
% \footnotetext{As returned by \cs{fp_use:N} or \cs{fp_eval:n}.}
%
% \begin{demo}
% \StatsTable \facebook[
%   counts, icc,
%   icc/format = \colorbox{blue!\currentcolumn 0!white}{#1},
%   allcounts/format = {\num[round-integer-to-decimal,
%                            round-mode=figures]{#1}}
% ]
% \end{demo}
%
% \begin{key}{allfreqs/format}
% \begin{syntax}
% allfreqs/format = \meta{formatting code}
% \end{syntax}
% This key take some formatting code, in which every occurrence of |#1| will be
% replaced by the current frequency\footnotemark in each cell of every row
% containing frequencies. The initial value is |\num{#1}|, using the
% \pkg{siunitx} package.
%
% The result of this formatting code will then be passed to |freqs/format|,
% |icf/format| or |dcf/format| depending on the row, for further parsing and
% formatting.
%
% The initial value is set by the |allfreqs/format/percent| key and typesets
% values in percentage (that is, multiplied by~$100$ with a trailing~$\%$).
% \end{key}
% \footnotetext{As returned by \cs{fp_use:N} or \cs{fp_eval:n}.}
%
% \begin{demo}
% \StatsTable \facebook[
%   icc, frequencies, icf,
%   allfreqs/format = {\num[round-mode=places,
%                           round-integer-to-decimal,
%                           round-precision=3]{#1}}
% ]
% \end{demo}
% Note that if you use |allfreqs/format| to round the frequencies to an
% acceptable precision, your frequencies might not add up to~$1$ anymore, and
% summing the frequencies up to some value might not give the same result as
% computing the cumulative frequency from the cumulative count. If you
% want to avoid that, consider using the |digits| key of the |table| module,
% which rounds the cumulative frequencies \emph{then} computes the individual
% frequencies as differences of consecutive cumulative ones. This essentially
% spreads the rounding errors so that they cancel each other, with a result not
% unlike that of the \textsc{Bresenham} algorithm.
%
% \begin{key}{allfreqs/format/percent}
% \begin{syntax}
% allfreqs/format/percent
% \end{syntax}
% This key sets up |allfreqs/format| to display the frequencies as percentages,
% that is, multiplied by~$100$ with a trailing~$\%$. This is the initial
% setting.
%
% \begin{texnote}
% This key is a shorthand for\\
% |allfreqs/format = \SI{\fp_eval:n{#1*100}}{\percent}|.
% \end{texnote}
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ frequencies, icf, allfreqs/format/percent ]
% \end{demo}
%
% \begin{key}{allfreqs/format/real}
% \begin{syntax}
% allfreqs/format/real
% \end{syntax}
% This key sets up |allfreqs/format| to |\num{#1}| which displays the
% frequencies as straight real numbers.
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ frequencies, icf, allfreqs/format/real ]
% \end{demo}
%
% \begin{key}{digits}
% \begin{syntax}
% digits = \meta{integer}
% \end{syntax}
% This key sets the number of digits after the decimal point to use for rounding
% cumulative frequencies. Point-wise frequencies are computed from these rounded
% cumulative frequencies to ensure consistency with the cumulative counts, and
% ensure the sum of frequencies equals~$1$. This essentially
% spreads the rounding errors so that they cancel each other, with a result not
% unlike that of the \textsc{Bresenham} algorithm.
%
% The rounding takes place before any formatting by |allfreqs/format| or
% individual \texttt{\meta{row}/format}. The initial value is~$3$ (which means
% one digit after the decimal separator in percentage).
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ frequencies, icf, digits=2 ]
% \end{demo}
%
% \subsubsection{Hiding and showing column contents}
%
% In addition to \texttt{\meta{row}/format}, |allcounts/format| and
% |allfreqs/format| which can all use \cs{currentcolumn} to apply different
% formatting to different columns, you can also use the following keys:
%
% \begin{key}[label=table/showonly]{showonly, showonly/hidden, showonly/shown}
% \begin{syntax}
% showonly = \meta{integer and integer range list}
% showonly/hidden = \meta{formatting code}
% showonly/shown = \meta{formatting code}
% \end{syntax}
% The |showonly| key enables you to choose which columns you want \emph{shown}
% --- and thus which ones you want to have their contents hidden. It takes a
% comma-separated list of single numbers or \texttt{\meta{start}-\meta{end}}
% ranges of numbers. An empty value means \emph{show everything}, and this is
% the initial value. To hide all contents, you can set |showonly| to a
% non-existent column number like~$0$.
%
% Every column whose number is in the |showonly| list (of ranges) is deemed
% \emph{shown}, which means all cells will be ultimately wrapped in the
% |showonly/shown| formatting code, where as usual |#1|~is replaced by the
% contents. That key initially just passes through the contents as-is.
%
% Every column whose number is \emph{not} in the list is \emph{hidden},
% \emph{i.e.} its cell contents are wrapped in the |showonly/hidden| formatting
% code. This key is initially empty which means the contents are ignored and the
% cell stays empty --- which means its width will collapse and only the column
% separation will remain. You can decide to still typeset the contents in white,
% or even put them in a PDF~``OCG layer'' with the \pkg{ocgx2} package for
% instance.
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ counts, frequencies, showonly={2,4-6} ]
% \StatsTable \facebook[ counts, frequencies, showonly={2,4-6},
%                        showonly/hidden = \color{white}#1 ]
% \end{demo}
%
% \subsubsection{Formatting the table}
%
% \begin{key}{maxcols}
% \begin{syntax}
% maxcols = \meta{comma-separated list of integers}
% \end{syntax}
% Setting this key to a positive integer~$n$ makes \cs{StatsTable} wrap after
% having added $n$~columns to the current table. The table is closed, and a new
% one is created with the row headers typeset anew. Setting this key to a
% negative number or zero disables wrapping. If you set the key to a list of
% integers, each one is used as the value for the corresponding subtable, with
% the last number staying in effect for all remaining subtables. The initial
% value is~$0$.
% \end{key}
%
% \begin{texnote}
% If there is a non-positive integer in the list, all subsequent integers are
% ignored since there will be no further wrapping thus no other subtable.
% \end{texnote}
%
% \begin{key}{tablesep}
% \begin{syntax}
% tablesep = \meta{\TeX\ content}
% \end{syntax}
% This key holds some \TeX\ content that will be inserted after each table when
% wrapping. It should probably contain something that creates a line return
% (either |\\| or |\par|), but can contain arbitrary code.
% The initial value is |\\|.
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ counts, maxcols=4,
%                        tablesep=\par{\color{red}\hrule} ]
% \end{demo}
%
% \begin{key}{preline}
% \begin{syntax}
% preline = \meta{array content}
% \end{syntax}
% This key holds some \TeX\ content that will be inserted first in the
% \env{array} environment, before any row content. It should probably be some
% kind of \cs{noalign} material, like a \cs{hline} or similar constructs.
% The initial value is \cs{firsthline}, with a fallback to \cs{hline} if the
% former doesn't exist.
% \end{key}
%
% \begin{key}{postline}
% \begin{syntax}
% postline = \meta{array content}
% \end{syntax}
% This key holds some \TeX\ content that will be inserted last in the
% \env{array} environment, after any row content. It should probably be some
% kind of \cs{noalign} material, like a \cs{hline} or similar constructs.
% The initial value is \cs{lasthline}, with a fallback to \cs{hline} if the
% former doesn't exist.
% \end{key}
%
% \begin{key}{outline}
% \begin{syntax}
% outline = \meta{array content}
% \end{syntax}
% This key sets both |preline| and |postline| to the same value.
% \end{key}
%
% \begin{key}{newline}
% \begin{syntax}
% newline = \meta{array content}
% \end{syntax}
% This key holds some \TeX\ content that will be inserted at the end of each
% row, to separate it from the next. \emph{It should contain some kind of
% \cs{cr}}, probably in the form of |\\|, but can also contain \cs{hline}s after
% the |\\|. The initial value is |\\| which creates tables without lines
% separating rows (as \pkg{booktabs} would recommend).
% \end{key}
%
% \begin{demo}
% \setlength\extrarowheight{1ex}
% \StatsTable \facebook[ counts, preline=\hline\hline,
%                        postline=\hline\hline\hline,
%                        newline=\\[1ex]\hline ]
% \end{demo}
%
% \begin{key}{coltype}
% \begin{syntax}
% coltype = \meta{preamble elements}
% \end{syntax}
% This key sets the part of the array preamble that will be repeated for each
% content column in the table. It can contain any preamble content, like "|" for
% vertical lines, but should only countain a single column specifier.
% The initial value is "c".
% \end{key}
%
% \begin{key}{headcoltype}
% \begin{syntax}
% headcoltype = \meta{preamble elements}
% \end{syntax}
% This key sets the part of the array preamble that will be used for the first
% column in the table, which contains the headers. It can contain any preamble
% content, like "|" for vertical lines, but should only countain a single column
% specifier.  The initial value is "l".
% \end{key}
%
% \begin{demo}
% \StatsTable \facebook[ counts, coltype=@{}c, headcoltype=r ]
% \end{demo}
%
% Note: these keys are here for convenience, but if you find yourself trying to
% do very clever things in them, you should consider using the \pkg{cellprops}
% package which is able to do much more complex border and background layouts
% with ease. In particular they probably shouldn't be used to workaround the
% very poor spacing of \env{array}: there are better solutions.
%
% Several classic uses of these keys can be replaced by the following key:
% \begin{key}{frame}
% \begin{syntax}
% frame = none $\vert$ clean $\vert$ full
% \end{syntax}
% The |frame| key selects a preset for |preline|, |postline|, |headcoltype| and
% |coltype|. The possible presets are:
% \begin{itemize}
%   \item |none|: clears |preline| and |postline|, sets |headcoltype = l| and
%       |coltype = c|. This removes all lines in the table and is useful if you
%       use other means like \pkg{cellprops} to style the table.
%   \item |clean|: sets |preline = \firsthline|, |postline = \lasthline|,
%       |headcoltype = l| and |coltype = c|. This corresponds to the initial
%       setting, and yields a layout similar to \pkg{booktabs} recommendations,
%       especially if you set \cs{firsthline} and \cs{lasthline} to be a little
%       thicker.
%   \item |full|: sets |preline = \firsthline|, |postline = \lasthline|,
%       "headcoltype = |l|" and "coltype = c|". This separates all cells
%       with rules.
% \end{itemize}
% \end{key}
%
% \begin{demo}
% \statisticssetup{table/showonly/hidden=\color{white}#1}
% \StatsTable \facebook[ counts, frequencies, frame=none ]
% \StatsTable \facebook[ counts, frequencies, frame=full, showonly=2-4 ]
% \end{demo}
%
% \begin{key}{valign}
% \begin{syntax}
% valign = t $\vert$ c $\vert$ b
% \end{syntax}
% The value of this key is used for the optional argument of the \env{array}
% environment. This enables to align either the baseline of the first line, that
% of the last line, or the vertical center of the table with the surrounding
% baseline. The initial value is |t|.
% \end{key}
%
%
% \subsection{Statistics graphs}
%
% \subsubsection{\cs{StatsGraph} invocation}
%
% To typeset a graphic from the statistics values, you use the command:
% \begin{function}{\StatsGraph}
%   \begin{syntax}
%       \cs{StatsGraph} \oarg{options_1} \marg{data source} \oarg{options_2}
%   \end{syntax}
%   \meta{options_1} and \meta{options_2} are both optional and taken into
%   account. You will probably not use both at the same time even if
%   \cs{StatsGraph} will accept it (and apply \meta{options_2} after
%   \meta{options_1}, potentially overriding some settings). The idea is to let
%   you decide where you feel the options should be. I find more logical to
%   specify options after a \cs{macro} data source, but before an inline
%   \marg{data source}. Your mileage may vary.
% \end{function}
%
% \begin{demo}
% \StatsGraph \facebook
% \end{demo}
%
% \cs{StatsGraph} will draw a different kind of graph depending on the
% \meta{data source} itself, and the |cumulative| option key. A summary is
% shown in the table below:
% \begin{center}
% \setlength\extrarowheight{1ex}
% \begin{tabular}{ccc}
%   \firsthline
%   values are ranges & without |cumulative| & with |cumulative| \\[0.8ex]
%   \hline
%   no & bar diagram\footnotemark & \emph{not implemented yet} \\[1ex]
%   yes & histogram &
%       \parbox[c]{10em}{\centering cumulative distribution function} \\[2ex]
%   \lasthline
% \end{tabular}
% \footnotetext{In this documentation this is called a \emph{comb graph}.}
% \end{center}
%
% \begin{demo}
% \def \combdata { 36=3, 37=8, 38=2, 39=6, 40=6, 41=3, 42=2, 45=2, 46=2 }
% \StatsGraph \combdata
% \end{demo}
% \def \combdata { 36=3, 37=8, 38=2, 39=6, 40=6, 41=3, 42=2, 45=2, 46=2 }
%
% \begin{demo}
% \StatsGraph \facebook [cumulative]
% \end{demo}
%
% \subsubsection{TikZ picture and datavisualization settings}
%
% \begin{key}{picture, picture/reset}
% \begin{syntax}
% picture = \meta{TikZ key options}
% picture/reset
% \end{syntax}
% The |picture| key \emph{appends} content to the optional argument of the
% \env{tikzpicture} environment. It can contain any list of TikZ keys. The
% |picture/reset| key clears all content accumulated by the |picture| key,
% including the initial value.
%
% The initial value is:\\
% |baseline = (current bounding box.center), label position = right|.
% \end{key}
%
% \begin{key}{axissystem, axissystem/reset}
% \begin{syntax}
% axissystem = \meta{TikZ cartesian axis system options}
% axissystem/reset
% \end{syntax}
% The |axissystem| key adds keys to the list of options passed to the
% |scientific axes| datavisualization key, The |axissystem/reset| key clears all
% content accumulated by the |axissystem| key, including the initial value,
% which is set by the initial value of the |width| key.
% \end{key}
%
% \begin{demo}
% \StatsGraph \combdata [axissystem={end labels, clean}]
% \end{demo}
%
% Two small helper keys are provided for a very common usage of |axissystem|:
%
% \begin{key}{width}
% \begin{syntax}
% width = \meta{\TeX\ dimension expression}
% \end{syntax}
% This key sets the width of the graphic to the given \meta{\TeX\ dimension
% expression}, labels and padding excluded. The expression is evaluated at graph
% creation time. The initial value is |0.75\columnwidth|.
% \begin{texnote}
% This key is a shortcut for |axissystem = { width = |\meta{dimension}| }|
% \end{texnote}
% \end{key}
%
% \begin{key}{height}
% \begin{syntax}
% height = \meta{\TeX\ dimension expression}
% \end{syntax}
% This key sets the width of the graphic to the given \meta{\TeX\ dimension
% expression}, labels and padding excluded. The expression is evaluated at graph
% creation time. Initially this is \emph{unset}, which means the default of
% the cartesian axis system will be used, that is the choosen width divided by
% the golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$.
% \begin{texnote}
% This key is a shortcut for |axissystem = { height = |\meta{dimension}| }|
% \end{texnote}
% \end{key}
%
% To have more precise control over the scale of the graph, you can use the
% individual axis options provided by \pkg{\ExplFileName} to set an explicit
% scaling with TikZ DataVisualization keys like |unit length|. See the PGF/TikZ
% manual for more information.
%
% \begin{demo}
% \statisticssetup[graph]{ width = 0.25\columnwidth, height=4cm }
% \centering
% \StatsGraph \facebook
% \StatsGraph \facebook [cumulative]
% \StatsGraph \combdata
% \end{demo}
%
% \begin{key}{tikzinfo', tikzinfo'/reset}
% \begin{syntax}
% tikzinfo' = \meta{TikZ picture code}
% tikzinfo'/reset
% \end{syntax}
% This key \emph{appends} content to be added in the |info'| section of the
% |\datavisualization| command. It can contain any TikZ code, and can use the
% |visualization cs| coordinate system. The result of this TikZ code is drawn
% \emph{before} the data itself and will end up behind unless you play with TikZ
% layers. Some information might be unavailable or wrong since the data has not
% been drawn yet.
%
% The |tikzinfo'/reset| key clears all content accumulated by the |tikzinfo'|
% key. The initial value is empty.
% \end{key}
%
% \begin{key}{tikzinfo, tikzinfo/reset}
% \begin{syntax}
% tikzinfo = \meta{TikZ picture code}
% tikzinfo/reset
% \end{syntax}
% This key \emph{appends} content to be added in the |info| section of the
% |\datavisualization| command. It can contain any TikZ code, and can use the
% |visualization cs| coordinate system. The result of this TikZ code is drawn
% \emph{after} the data itself and will end up in front of it unless you play
% with TikZ layers.
%
% The |tikzinfo/reset| key clears all content accumulated by the |tikzinfo|
% key. The initial value is empty.
% \end{key}
%
% \begin{demo}
% \StatsGraph \facebook [
%   cumulative,
%   tikzinfo = {
%       \path (data bounding box.south west) coordinate (O);
%       \path (visualization cs:x=8, y=50) coordinate (A);
%       \draw[red] (O |- A) -- (A) -- (A |- O);
%   }
% ]
% \end{demo}
%
% \subsubsection{Styling the graph}
%
% \begin{key}{style,            style/reset,
%             comb/style,       comb/style/reset,
%             histogram/style,  histogram/style/reset,
%             cumulative/style, cumulative/style/reset,}
% \begin{syntax}
% style = \meta{TikZ path options}
% \meta{graph type}/style = \meta{TikZ path options}
% style/reset, \meta{graph type}/style/reset
% \end{syntax}
% The \texttt{\meta{graph type}/style} keys append options to the TikZ path
% created by the datavisualization when the corresponding graph type is used.
% You can clear these options with \texttt{\meta{graph type}/style/reset}.
% If you omit the graph type, this sets the label for all graph types
% simultaneously.
%
% The initial values are:
% \begin{verbatim}
%   comb/style = ultra-thick,
%   cumulative/style = %empty
%   histogram/style  = {
%       every~path/.prefix~style=fill,
%       semithick, black, fill=black, fill~opacity=0.1
%   },
% \end{verbatim}
% \end{key}
%
% \begin{demo}
% \statisticssetup[graph]{width=0.45\linewidth,
%                         style=blue, cumulative/style=densely dashed }
% \StatsGraph \facebook [ cumulative ]
% \hfill \StatsGraph \facebook[style={
%   fill opacity=0, pattern=north west lines,
% }]
% \end{demo}
%
% \subsubsection{Selecting which parts of the graph are shown}
%
% By default, the complete graph is shown; you can ask \cs{StatsGraph} to only
% show the parts corresponding to some of the input data:
%
% \begin{key}[label=graph/showonly]{showonly}
% \begin{syntax}
% showonly = \meta{integer and integer range list}
% \end{syntax}
% The |showonly| key enables you to set which parts of the graph you want
% \emph{shown}. It takes a comma-separated list of single numbers or
% \texttt{\meta{start}-\meta{end}} ranges of numbers. An empty value means
% \emph{show everything}, and this is the initial value. To hide all contents,
% you can set |showonly| to a non-existent part number like~$-1$.
% \end{key}
%
% \medskip
% For comb graphs, the $n$-th part is the vertical bar corresponding to the
% $n$-th value in the data source. For histograms, this is the rectangle
% corresponding to the $n$-th range.
%
% For cumulative distribution functions of data sources with ranges, this is the
% direct image of the $n$-th range by the function. The horizontal segment
% between $-\infty$ and the lower bound of the first range is assigned
% number~$0$, and the part right of the last range is selected by number~$N+1$
% where $N$~is the total number of ranges.
%
% Currently, the drawing of hidden parts is inhibited altogether, but in the
% future it is planned to have them drawn with another visualizer and a separate
% style.
%
% \begin{demo}
% \statisticssetup{ graph/width=0.45\columnwidth }
% \StatsGraph \facebook [ showonly={2,4-6} ]
% \StatsGraph \facebook [ cumulative, showonly={1,3-5,7} ]
% \end{demo}
%
% \subsubsection{Unit selection and vertical axis settings}
%
% \begin{key}[label={graph/counts, graph/frequencies}]{counts, frequencies}
% \begin{syntax}
% counts $[$ = \meta{label} $]$
% frequencies $[$ = \meta{label} $]$
% \end{syntax}
% These keys select the corresponding unit to use for the vertical axis of comb
% graphs and cumulative distribution graphs, and for the area display of
% histograms. Additionnally, if a \meta{label} is provided, it is passed to the
% |counts/label| or the |frequencies/label| key.
%
% The initially selected unit is |counts|.
% \end{key}
%
% \begin{key}{comb/counts, comb/frequencies,
%             histogram/counts, histogram/frequencies,
%             cumulative/counts, cumulative/frequencies}
% \begin{syntax}
% \meta{graph type}/counts $[$ = \meta{label} $]$
% \meta{graph type}/frequencies $[$ = \meta{label} $]$
% \end{syntax}
% These keys select the unit to use for specific types of graphs separately.
% They can be used in the inline options of \cs{StatsGraph} too, but they
% probably only make sense in \cs{statisticssetup} to define different defaults
% for different graph types.
% \begin{texnote}
% The |counts| key is actually a meta-key for\\
% |comb/counts, histogram/counts, cumulative/counts|, which applies the same
% value (or no value at all) to all three type-specific keys. The |frequencies|
% key is similar.
% \end{texnote}
% \end{key}
%
% \begin{demo}
% \statisticssetup[graph]{
%   width=0.4\columnwidth,
%   frequencies=Hello world, comb/counts=Students
% }
% \StatsGraph \facebook              \hfill \StatsGraph \combdata \\
% \StatsGraph \facebook [cumulative] \hfill \StatsGraph \facebook[counts]
% \end{demo}
%
% Note that setting a label for the vertical axis of histogram does not make
% much sense, even if your decision will be respected.
%
% \begin{key}{counts/label, frequencies/label,
%             comb/counts/label, comb/frequencies/label,
%             histogram/counts/label, histogram/frequencies/label,
%             cumulative/counts/label, cumulative/frequencies/label}
% \begin{syntax}
% \meta{unit}/label = \meta{label}
% \meta{graph type}/\meta{unit}/label = \meta{label}
% \end{syntax}
% These keys set the label to use for the $y$~axis of the graph when the
% corresponding unit is selected, \emph{without} selecting it at that point.
% This is useful to provide your own defaults through \cs{statisticssetup}.
%
% The keys |counts/label| and |frequencies/label| set the label for all three
% graph types, while the others are here to set individual defaults.
% \end{key}
%
% Initial values are as follows:
% \begin{itemize}
% \item |comb/counts/label = \countname|
% \item |comb/frequencies/label = \freqname|
% \item |cumulative/counts/label = \ccountname|
% \item |cumulative/frequencies/label = \cfreqname|
% \item |histogram/counts/label| and |histogram/frequencies/label| are unset
% \end{itemize}
%
% \begin{texnote}
% The \texttt{\meta{type}/\meta{unit}/label} key is a shorthand for
% \texttt{\meta{type}/\meta{unit}/axis} | = { label = |\meta{label}| }|, which
% means that using \texttt{\meta{type}/\meta{unit}/axis/reset} will also remove
% any defined label.
% \end{texnote}
% \begin{texnote}
% As before, \texttt{\meta{unit}/label = \meta{label}} is equivalent to\par
% \begingroup\obeylines\ttfamily
% comb/\meta{unit}/label = \meta{label},
% histogram/\meta{unit}/label = \meta{label},
% cumulative/\meta{unit}/label = \meta{label}
% \endgroup
% \end{texnote}
%
% \begin{key}{y/label, comb/y/label, histogram/y/label, cumulative/y/label}
% \begin{syntax}
% y/label = \meta{label}
% \meta{graph type}/y/label = \meta{label}
% \end{syntax}
% These keys set the label to use for the $y$~axis of the graph for both units
% at the same time. |y/label| sets the label for all graph types and all units
% simultaneously, while \texttt{\meta{graph type}/y/label} can be used for
% individual graph types.
% \end{key}
%
% This can be useful to set the label in inline options without having to
% explicitely type the graph type or the selected unit:
%
% \begin{demo}
% \statisticssetup[graph]{
%   width=0.38\columnwidth,
%   comb/frequencies, cumulative/counts,
% }
% \StatsGraph \combdata [ y/label=Students ]
% \StatsGraph \facebook [ cumulative, y/label=Respondents ]
% \end{demo}
%
% \begin{key}{counts/axis, frequencies/axis,
%             comb/counts/axis, comb/frequencies/axis,
%             histogram/counts/axis, histogram/frequencies/axis,
%             cumulative/counts/axis, cumulative/frequencies/axis,
%             counts/axis/reset, frequencies/axis/reset,
%             comb/.../axis/reset,
%             histogram/.../axis/reset,
%             cumulative/.../axis/reset}
% \begin{syntax}
% \meta{unit}/axis = \meta{TikZ datavisualization axis options}
% \meta{unit}/axis/reset
% \meta{graph type}/\meta{unit}/axis =\
%\meta{TikZ datavisualization axis options}
% \meta{graph type}/\meta{unit}/axis/reset
% \end{syntax}
% The \texttt{\meta{unit}/axis} keys append options to the TikZ $y$~axis when
% the corresponding unit is selected. You can clear these options with
% \texttt{\meta{unit}/axis/reset}. The \texttt{\meta{graph
% type}/\meta{unit}/axis} and \texttt{\meta{graph type}/\meta{unit}/axis/reset}
% keys do the same, but only for a specific graph type.
%
% Initial values are as follows:
% \begin{itemize}
% \item |comb/counts/axis| and |cumulative/counts/axis| are equal to\\
%   |ticks and grid={many, int about strategy, integer minor steps*},|\\
%   |label=|\meta{initial value of the label key}
% \item |cumulative/counts/axis| and |cumulative/frequencies/axis| are
%   equal to\\
%   |ticks and grid=many, label=|\meta{initial value of the label key}
% \item |histogram/counts/axis| and |histogram/frequencies/axis| are equal to\\
%   |ticks=none, grid=|\meta{code to auto-compute the step} (see the
%   |histogram/autostep| key below).
% \end{itemize}
% \end{key}
%
% \begin{key}{y/axis, y/axis/reset,
%             comb/axis, comb/axis/reset,
%             histogram/axis, histogram/axis/reset,
%             cumulative/axis, cumulative/axis/reset}
% \begin{syntax}
% y/axis = \meta{TikZ datavisualization axis options}
% y/axis/reset
% \meta{graph type}/y/axis = \meta{TikZ datavisualization axis options}
% \meta{graph type}/y/axis/reset
% \end{syntax}
% The \texttt{y/axis} keys append options to the TikZ $y$~axis for all possible
% units and all graph types at the same time. The \texttt{y/axis/reset} key
% clears these options for all units and all types simultaneously.
%
% The \texttt{\meta{graph type}/y/axis} and \texttt{\meta{graph
% type}/y/axis/reset} keys do the same, but only for a specific graph type.
% \end{key}
%
% \begin{demo}
% \statisticssetup[graph]{
%   width=0.4\columnwidth,
%   comb/frequencies/axis = { ticks={step=0.08} },
%   histogram/y/axis = { grid = none },
% }
% \StatsGraph \combdata [ frequencies, y/axis = {
%   ticks={style=blue}, unit length=4cm per 0.25 units,
% } ]
% \hfill \StatsGraph \facebook
% \end{demo}
%
% \begin{key}{/tikz/datavisualization/integer minor steps,
%             /tikz/datavisualization/integer minor steps*}
% \begin{syntax}
% integer minor steps $[$ = \meta{integer expression} $]$
% integer minor steps* $[$ = \meta{integer expression} $]$
% \end{syntax}
% These are not keys in the |graph| module, but TikZ keys. They add code to
% automatically compute |minor steps between steps| after the axis step has been
% computed with the choosen strategy, so that the following constraints are
% respected:
% \begin{itemize}
%   \item a minor step corresponds to an integer number;
%   \item at most \meta{integer expression} ticks are present on the axis (minor
%   and major included, subminor not counted).
% \end{itemize}
% In addition, the starred version ensures that the major step is never below
% one, which makes sense for counts where sub-unit graduations are confusing at
% best.
% \end{key}
%
% If ommited, the \meta{integer expression} defaults to~$50$.
%
% These TikZ keys should not explode if the computed step is not an integer, but
% will probably not give a useful result, and in particular whether the minor
% step will be integer is not defined in that case.
%
% \begin{texnote}
% The keys are independent of \pkg{statistics} and could be reused elsewhere.
% \end{texnote}
%
% \begin{key}{counts/format, frequencies/format, y/format,
%             comb/counts/format, comb/frequencies/format, comb/y/format,
%             histogram/counts/format, histogram/frequencies/format,
%             histogram/y/format,
%             cumulative/counts/format, cumulative/frequencies/format,
%             cumulative/y/format}
% \begin{syntax}
% \meta{unit}/format = \meta{formatting code}
% \meta{graph type}/\meta{unit}/format = \meta{formatting code}
% \end{syntax}
% These keys set the format to use for all counts or frequenties that are
% typeset on the graphs. This includes the ticks on axes, and areas above
% histogram rectangles. The value should be \TeX\ code to render the actual
% number, in which all occurrences of |#1| are replaced by the number to
% typeset.
%
% Keys of the form |\meta{graph type}/\meta{unit}/format| are used to set the
% formatter of numbers in a specific unit when used in a specific graph. Keys of
% the form |\meta{unit}/format| set the formatter for all graph types at the
% same time, which is often desirable since it is rare that a frequency needs to
% be typeset differently in \emph{e.g.} comb graphs and histograms.
%
% You can use |\meta{graph type}/y/format| or |y/format| to set the formatter
% for both units at the same time, which is mainly useful for inline options to
% avoid repeating the selected unit for each key.
%
% Initial settings are: |counts/format = \num{#1}| and
% |frequencies/format/percent| (see below for an exlpanation of that key).
% \end{key}
%
% \begin{demo}
% \StatsGraph \combdata [
%       y/label=, width=0.4\columnwidth,
%       y/format=#1\text{ student\ifnum#1=1\else s\fi}
% ]
% \end{demo}
%
% \begin{key}{frequencies/format/real,
%             comb/frequencies/format/real,
%             histogram/frequencies/format/real,
%             cumulative/frequencies/format/real}
% \begin{syntax}
% frequencies/format/real = \meta{number of decimals}
% \meta{graph type}/frequencies/format/real = \meta{number of decimals}
% \end{syntax}
% These keys make the corresponding format typeset its argument as a real
% number, using the \cs{num} command of the \pkg{siunitx} package.
% \begin{texnote}
% This is equivalent to:\\
% |frequencies/format = \num[round-mode=places,round-precision=##1]{####1}|
% \end{texnote}
% \end{key}
%
% \begin{key}{frequencies/format/percent,
%             comb/frequencies/format/percent,
%             histogram/frequencies/format/percent,
%             cumulative/frequencies/format/percent}
% \begin{syntax}
% frequencies/format/percent = \meta{number of decimals}
% \meta{graph type}/frequencies/format/percent = \meta{number of decimals}
% \end{syntax}
% These keys make the corresponding format typeset its argument as a percentage,
% using the \cs{num} command of the \pkg{siunitx} package. This is the initial
% setting.
% \begin{texnote}
% This is equivalent to:\\
% |frequencies/format = { \SI[round-mode=places,round-precision=##1]{| \\
% |     \fp_eval:n{####1*100}| \\
% |}{\percent}|
% \end{texnote}
% \end{key}
%
% \begin{key}{counts/margin, frequencies/margin, y/margin,
%             comb/counts/margin, comb/frequencies/margin, comb/y/margin,
%             histogram/counts/margin, histogram/frequencies/margin,
%             histogram/y/margin,
%             cumulative/counts/margin, cumulative/frequencies/margin,
%             cumulative/y/margin}
% \begin{syntax}
% \meta{unit}/margin = \meta{numeric expression}
% \meta{graph type}/\meta{unit}/margin = \meta{numeric expression}
% \end{syntax}
% These keys set the margin that will be used for the relevant axis in the
% corresponding graph type, that is the amount of space above the data that
% will be reserved by \cs{StatsGraph}. The \meta{numeric expression} should
% compute a count or a frequency depending on the selected unit, and will
% correspond to the empty space reserved above the graph \emph{in this very
% unit}.
%
% In this expression, the following constants will be available: \cs{min} which
% is the minimum count or frequency where something is drawn in the graph
% (currently this is always zero); \cs{max} which is the maximum count or
% frequency in the graph; and \cs{range} which is |\max - \min|.
%
% As usual, keys of the form |\meta{graph type}/\meta{unit}/margin| are used to
% define the margin in a specific unit when used in a specific graph, whereas
% keys of the form |\meta{unit}/margin| set the margin for all graph types at
% the same time.
%
% You can use |\meta{graph type}/y/margin| or |y/margin| to set the margin
% for both units at the same time, which is mainly useful for inline options to
% avoid repeating the selected unit for each key.
%
% The inital value is |y/margin = \range / 10|.
% \end{key}
%
% \begin{texnote}
% This expression will be evaluated with the rules of |\fp_eval:n|
% (with |\fp_gset:Nn| to be exact).
% \end{texnote}
%
% \begin{demo}
% \StatsGraph \combdata [ width=0.4\columnwidth, y/margin=2 ]
% \end{demo}
%
% \subsubsection{Horizontal axis settings}
%
% \begin{key}{values/label, x/label,
%             comb/values/label, comb/x/label,
%             histogram/values/label, histogram/x/label,
%             cumulative/values/label, cumulative/x/label}
% \begin{syntax}
% values/label = \meta{label}, x/label = \meta{label}
% \meta{graph type}/values/label = \meta{label}
% \meta{graph type}/x/label = \meta{label}
% \end{syntax}
% These keys set the label to use for the $x$~axis of the graph when the
% corresponding graph type is used. The keys with |x| are aliases for the
% similar keys with |values|. If you omit the graph type, this sets the label
% for all graph types simultaneously.
%
% The initial value is |values/label = \valuename|.
% \end{key}
%
% \begin{texnote}
% The \texttt{\meta{type}/values/label} key is a shorthand for
% \texttt{\meta{type}/values/axis} | = { label = |\meta{label}| }|, which
% means that using \texttt{\meta{type}/values/axis/reset} will also remove
% any defined label.
% \end{texnote}
%
% \begin{demo}
% \statisticssetup[graph]{
%   width=0.38\columnwidth,
%   comb/frequencies, cumulative/counts,
% }
% \StatsGraph \combdata [ values/label=Shoe size ]
% \StatsGraph \facebook [ cumulative, x/label=Time spent on Facebook ]
% \end{demo}
%
% \begin{key}{values/axis, x/axis,
%             comb/values/axis, comb/x/axis,
%             histogram/values/axis, histogram/x/axis,
%             cumulative/values/axis, cumulative/x/axis,
%             values/axis/reset, x/axis/reset,
%             comb/values/axis/reset, comb/x/axis/reset,
%             histogram/values/axis/reset, histogram/x/axis/reset,
%             cumulative/values/axis/reset, cumulative/x/axis/reset}
% \begin{syntax}
% \meta{graph type}/values/axis = \meta{TikZ datavisualization axis options}
% \meta{graph type}/x/axis = \meta{TikZ datavisualization axis options}
% \meta{graph type}/values/axis/reset, \meta{graph type}/x/axis/reset
% \end{syntax}
% The \texttt{\meta{graph type}/values/axis} keys append options to the TikZ
% $x$~axis when the corresponding graph type is used. You can clear these
% options with \texttt{\meta{graph type}/values/axis/reset}. The keys with |x|
% are aliases for the similar keys with |values|. If you omit the graph type,
% this sets the label for all graph types simultaneously.
%
% The initial value is:
% \begin{verbatim}
% values/axis = {
%   label = \valuename,
%   ticks and grid={many, integer minor steps}
% }
% \end{verbatim}
% \end{key}
%
% \begin{demo}
% \statisticssetup[graph]{
%   width=0.4\columnwidth,
%   comb/frequencies/axis = { ticks={step=0.08} },
%   histogram/y/axis = { grid = none },
% }
% \StatsGraph \combdata [ frequencies, y/axis = {
%   ticks={style=blue}, unit length=4cm per 0.25 units,
% } ]
% \hfill \StatsGraph \facebook
% \end{demo}
%
% \begin{key}{values/format, x/format,
%             comb/values/format, comb/x/format,
%             histogram/values/format, histogram/x/format,
%             cumulative/values/format, cumulative/x/format}
% \begin{syntax}
% values/format = \meta{formatting code}, x/format = \meta{formatting code}
% \meta{graph type}/values/format = \meta{formatting code}
% \meta{graph type}/x/format = \meta{formatting code}
% \end{syntax}
% These keys set the format to use for all values that are typeset on the
% graphs, which currently means the values typeset alongside ticks on the
% x~axis. The \meta{formatting code} should be \TeX\ code to render the actual
% number, in which all occurrences of |#1| are replaced by the value to
% typeset. The formatting code is typeset in math mode.
%
% Keys of the form |\meta{graph type}/value/format| are used to set the
% formatter of values when used in a specific graph. The keys with |x| are
% aliases for the similar keys with |values|. If you omit the graph type, this
% sets the label for all graph types simultaneously.
%
% The initial value is |values/format = \num{#1}|.
% \end{key}
%
% \begin{demo}
% \StatsGraph \combdata [
%       width=0.5\columnwidth,
%       x/format=\fbox{$#1$}
% ]
% \end{demo}
%
% \begin{key}{values/margin, x/margin,
%             comb/values/margin, comb/x/margin,
%             histogram/values/margin, histogram/x/margin,
%             cumulative/values/margin, cumulative/x/margin}
% \begin{syntax}
% values/margin = \meta{numeric expression},\
%x/margin = \meta{numeric expression}
% \meta{graph type}/values/margin = \meta{numeric expression}
% \meta{graph type}/x/margin = \meta{numeric expression}
% \end{syntax}
% These keys set the margin that will be used for the x~axis in the
% corresponding graph type, that is the amount of space left and right of the
% data that will be reserved by \cs{StatsGraph}. The \meta{numeric expression},
% when evaluated, will correspond to the empty space reserved left of the
% smallest value and right of the biggest one, with the same scale as the values
% themselves.
%
% In this expression, the following constants will be available: \cs{min} which
% is the minimum value in the graph; \cs{max} which is the maximum value;
% \cs{range} which is |\max - \min|; and \cs{xstep} which is the distance
% between two minor ticks in the graph (this is the axis step if
% |minor steps between steps| is empty).
%
% The inital value is |x/margin = \xstep / 2|.
% \end{key}
%
% \begin{texnote}
% This expression will be evaluated with the rules of |\fp_eval:n|
% (with |\fp_gset:Nn| to be exact).
% \end{texnote}
%
% \begin{demo}
% \StatsGraph \combdata [ width=0.5\columnwidth, x/margin=2 ]
% \end{demo}
%
% \subsubsection{Settings specific to cumulative graphs}
%
% \begin{key}{cumulative}
% \begin{syntax}
% cumulative $[$ = \meta{truth value} $]$
% \end{syntax}
% This key activates or deactivates the cumulative mode of \cs{StatsGraph}. The
% \meta{truth value} must be either |true| or |false| or be ommited, in which
% case it defaults to |true|.
%
% This mode is currently ignored if the counts are given for pointwise values,
% as opposed to value ranges. Support is planned but a suitable interface still
% needs to be devised for settings corresponding to the discontinuities.
%
% The initial value is |cumulative = false|.
% \end{key}
%
% \begin{key}{decreasing}
% \begin{syntax}
% decreasing $[$ = \meta{truth value} $]$
% \end{syntax}
% This key selects whether the cumulative mode of \cs{StatsGraph} plots the
% decreasing cumulative distribution function (that maps $x$ to the frequency of
% $\left[x;+\infty\right[$) instead of the classical increasing one (mapping $x$
% to the frequency of $\left]-\infty;x\right]$). The \meta{truth value} must be
% either |true| or |false| or be ommited, in which case it defaults to |true|.
%
% The initial value is |decreasing = false|.
% \end{key}
%
% \begin{demo}
% \statisticssetup[graph]{ width = 0.25\columnwidth, height=4cm }
% \centering
% \StatsGraph \facebook
% \StatsGraph \facebook [cumulative]
% \StatsGraph \facebook [cumulative, decreasing]
% \end{demo}
%
% \subsubsection{Settings specific to histograms}
%
% \begin{key}{histogram/areas}
% \begin{syntax}
% histogram/areas $[$ = \meta{truth value} $]$
% \end{syntax}
% This key activates or deactivates the typesetting of counts or frequencies
% above the rectangles in the histogram. They correspond to the area of the
% rectangle according to histogram rules, which explains the name of the key.
%
% If ommited the \meta{truth value} defaults to |true|, which is also the
% initial value.
% \end{key}
%
% \begin{demo}
% \StatsGraph \facebook [width=0.5\columnwidth, histogram/areas = false]
% \end{demo}
%
% \begin{key}{histogram/areas/style, histogram/areas/style/reset}
% \begin{syntax}
% histogram/areas/style = \meta{TikZ node options}
% histogram/areas/style/reset
% \end{syntax}
% This key appends options to the TikZ nodes containing the areas (counts or
% frequencies). Note that the typesetting of the areas will be controlled by
% the \texttt{histogram/\meta{unit}/format} keys, which means that the
% |histogram/areas/style| is intended for common styling.
%
% The initial value is |histogram/areas/style = { auto, font=\small }|.
%
% \begin{texnote}
% The node is positionned in the middle of the top edge of the rectangle so if
% you do not want it there some style option like |auto| or |above| should be
% used.
% \end{texnote}
% \end{key}
%
% \begin{demo}
% \StatsGraph \facebook [ histogram/areas/style/reset,
%                         histogram/areas/style = { fill=white } ]
% \end{demo}
%
% \begin{key}{histogram/counts/autostep, histogram/frequencies/autostep,
%             histogram/y/autostep}
% \begin{syntax}
% histogram/\meta{unit}/autostep $[$ = \meta{floating point expression} $]$
% histogram/y/autostep $[$ = \meta{floating point expression} $]$
% \end{syntax}
% This key setups the y~axis grid so that a grid tile corresponds to
% \meta{floating point expression} items. This expression is interpreted as a
% count, but you can use the \cs{total} constant which is the total count.
% In particular, |\total/100| represents exactly \SI{1}{\percent}.
%
% This key essentially divides the \meta{floating point expression} by the
% horizontal distance between minor steps of the values axis, then uses the
% result as the vertical step. As a convenience, |histogram/y/autostep| forwards
% its value to |histogram/legend/area| in addition to the
% \texttt{histogram/\meta{unit}/autostep} keys.
%
% If ommited the \meta{floating point expression} defaults to $1$.
% The initial value is |histogram/y/autostep = 1|.
%
% \begin{texnote}
% \texttt{histogram/\meta{unit}/autostep} uses
% \texttt{histogram/\meta{unit}/axis} internally, so
% \texttt{histogram/\meta{unit}/axis/reset} will neuter its effect.
% \end{texnote}
% \end{key}
%
% \begin{demo}
% \StatsGraph \facebook [frequencies, histogram/y/autostep=2*\total/100]
% \end{demo}
%
% \begin{key}{histogram/legend, histogram/legend/x, histogram/legend/w}
% \begin{syntax}
% histogram/legend = "{" \meta{legend keys} "}"
% histogram/legend/x = $[$ \meta{floating point expression} $]$
% histogram/legend/w = \meta{floating point expression}
% \end{syntax}
% If |histogram/legend/x| is set to an empty value, no legend will be typeset.
% Else, it should be a \meta{floating point expression} which corresponds to the
% \emph{value} at which the left side of the legend rectangle will lie. In that
% case |histogram/legend/w| should be a \meta{floating point expression}
% representing the width (in value units) of the legend rectangle.
%
% In both of these expressions, the following constants are available:
% \end{key}
% \begin{itemize}
% \item \cs{min} which is the minimum value where data is present;
% \item \cs{max} which is the maximum value where data is present;
% \item \cs{range} which is |\max - \min|;
% \item \cs{xstep} which is the distance between two minor steps of the x axis.
% \end{itemize}
%
% In fact, you probably will not set these keys directly, but will use the
% |histogram/legend| key, which requires as value a comma-separated list of
% sub-keys that will be used under the |histogram/legend/| path. In particular,
% |histogram/legend = { x=2, y=3 }| is equivalent to
% |histogram/legend/x=2, histogram/legend/y=3|.
%
% \begin{key}{histogram/legend/y, histogram/legend/h, histogram/legend/area}
% \begin{syntax}
% histogram/legend/y = \meta{floating point expression}
% histogram/legend/h = \meta{floating point expression}
% histogram/legend/area = \meta{floating point expression}
% \end{syntax}
% If |histogram/legend/x| is not empty, |histogram/legend/y| and
% |histogram/legend/h| should be \meta{floating point expression}s which
% correspond to the y~coordinate of the bottom side and the vertical dimension
% respectively of the legend rectangle, in count per value units.
%
% In both of these expressions, the following constants are available:
% \end{key}
% \begin{itemize}
% \item \cs{min} which is the $y$~coordinate of the bottom of all histogram
% rectangles (this is always~$0$);
% \item \cs{max} which is the $y$~coordinate of the tallest histogram rectangle;
% \item \cs{range} which is |\max - \min|;
% \item \cs{xstep} which is the distance between two minor steps of the x axis.
% \item \cs{width} which is the width of the legend rectangle as computed by
% evaluating |histogram/legend/w|;
% \item \cs{total} which is the total number of elements, useful when you want
% to size the legend using frequencies (the dimensions here always use counts).
% \end{itemize}
% Additionnally, when evaluating |histogram/legend/y| the |\height|~constant
% will be available and equal to the just computed value of
% |histogram/legend/h|.
%
% The key |histogram/legend/area = |\meta{fp expression} is a shorthand for:\\
% |histogram/legend/h = (|\meta{fp expression}|) / \width|.
%
% Again,  you probably will not set these keys directly but using the
% |histogram/legend| key.
%
% \begin{key}{histogram/legend/options, histogram/legend/options/reset,
%            histogram/legend/label}
% \begin{syntax}
% histogram/legend/options = \meta{TikZ node options}
% histogram/legend/options/reset
% histogram/legend/label = \meta{TikZ label value}
% \end{syntax}
% The key |histogram/legend/options| appends the \meta{TikZ node options} to the
% list of options that will be passed to the TikZ node responsible for the
% legend rectangle, \emph{after} the options in |histogram/style|. You can use
% it to tweak the apparance of the legend.
%
% The key |histogram/legend/label = |\meta{label} is a shorthand for:\\
% |histogram/legend/options = { label = {|\meta{fp expression}|} }|, and thus
% uses the TikZ label syntax.
%
% Again,  you probably will not set these keys directly but using the
% |histogram/legend| key.
% \end{key}
%
% The initial value is |histogram/legend = { x=, y=0, w=\xstep, area=1 }| which
% means that no legend is typeset, and the legend options are empty.
%
% \begin{texnote}
% |area=1| is actually set by the initial value of |histogram/y/autostep|.
% \end{texnote}
%
% \begin{demo}
% \statisticssetup[graph]{ width = 0.48\columnwidth }
% \StatsGraph \facebook [
%   histogram/legend = { x=9, y=8, label=1 student }
% ]
% \StatsGraph \facebook [
%   frequencies, histogram/y/autostep=0.02*\total,
%   histogram/legend = { x=12, y=2*\height, w=2, area=0.08*\total,
%                        label=above:\SI{8}{\percent} }
% ]
% \end{demo}
%
% \end{documentation}
%
% \cleardoublepage
% \begin{implementation}
%
% \section{\pkg{\ExplFileName} implementation}
%
%    \begin{macrocode}
%<*package>
%<@@=statistics>
%    \end{macrocode}
%
%    \begin{macrocode}
\ProvidesExplPackage
  {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
%    \end{macrocode}
%
%    \begin{macrocode}
\RequirePackage{xparse}
\RequirePackage{siunitx}
\RequirePackage{tikz}
\RequirePackage{etoolbox}

\ExplSyntaxOff
\usetikzlibrary{datavisualization, fit}
\ExplSyntaxOn
%    \end{macrocode}
%
% Translations
%
%    \begin{macrocode}
\tl_new:N \valuename
\tl_new:N \countname
\tl_new:N \freqname
\tl_new:N \ccountname
\tl_new:N \cfreqname
\tl_new:N \iccname
\tl_new:N \icfname
\tl_new:N \dccname
\tl_new:N \dcfname

\tl_set:Nn \valuename   { Values }
\tl_set:Nn \countname   { Count }
\tl_set:Nn \ccountname  { Cumulative~count }
\tl_set:Nn \freqname    { Frequency }
\tl_set:Nn \cfreqname   { Cumulative~frequency }
\tl_set:Nn \iccname     { ICC }
\tl_set:Nn \icfname     { ICF }
\tl_set:Nn \dccname     { DCC }
\tl_set:Nn \dcfname     { DCF }

\AtEndPreamble {
    \tl_if_exist:NT \captionsfrench {
        \tl_put_right:Nn \captionsfrench {
            \tl_set:Nn \valuename   { Modalit\'e }
            \tl_set:Nn \countname   { Effectif }
            \tl_set:Nn \ccountname  { Effectif~cumul\'e }
            \tl_set:Nn \freqname    { Fr\'equence }
            \tl_set:Nn \cfreqname   { Fr\'equence~cumul\'ee }
            \tl_set:Nn \iccname     { ECC }
            \tl_set:Nn \icfname     { FCC }
            \tl_set:Nn \dccname     { ECD }
            \tl_set:Nn \dcfname     { FCD }
        }
    }
}
%    \end{macrocode}
%
% \subsection{Common facilities}
%
%    \begin{macrocode}
\cs_new_protected:Nn \@@_keys_define:nn {
    \keys_define:nn { statistics / #1 } { #2 }
}
\cs_new_protected:Nn \@@_setup:nn {
    \keys_set:nn { statistics / #1 } { #2 }
}
\NewDocumentCommand \statisticssetup { o +m } {
    \IfNoValueTF { #1 } {
        \keys_set:nn { statistics } { #2 }
    }{
        \keys_set:nn { statistics / #1 } { #2 }
    }
}

\tl_new:N \l_@@_data_tl
\seq_new:N \l_@@_show_seq

\int_new:N \l_@@_nbvals_int
\int_new:N \l_@@_currange_int

\fp_new:N \l_@@_total_fp
\fp_new:N \l_@@_curtotal_fp

\fp_new:N \l_@@_range_min_fp
\fp_new:N \l_@@_range_max_fp
\tl_new:N \l_@@_range_minrel_tl
\tl_new:N \l_@@_range_maxrel_tl
\cs_new_protected_nopar:Npn
            \@@_parse_range:w \IN#1#2;#3;#4#5\q_stop {
%    \end{macrocode}
%
%    \begin{itemize}
%        \item |#1| is the first |[| or |]|
%        \item |#4| is the second |[| or |]| and |#5| eats all trailing tokens
%    \end{itemize}
%
%    \begin{macrocode}
    \fp_set:Nn \l_@@_range_min_fp { #2 }
    \fp_set:Nn \l_@@_range_max_fp { #3 }
}
\cs_new_protected_nopar:Npn
            \@@_parse_range_full:w \IN#1#2;#3;#4#5\q_stop {
    \fp_set:Nn \l_@@_range_min_fp { #2 }
    \fp_set:Nn \l_@@_range_max_fp { #3 }
    \tl_if_eq:nnTF { #1 } { [ } {
        \tl_set:Nn \l_@@_range_minrel_tl { <=}
    }{
        \tl_set:Nn \l_@@_range_minrel_tl { < }
    }
    \tl_if_eq:nnTF { #4 } { ] } {
        \tl_set:Nn \l_@@_range_maxrel_tl { <= }
    }{
        \tl_set:Nn \l_@@_range_maxrel_tl { < }
    }
    \exp_args:NNnx
    \prg_set_conditional:Nnn \@@_if_in_range:n { T } {
        \exp_not:N \fp_compare:nTF {
                \exp_not:N \l_@@_range_min_fp
                \exp_not:V \l_@@_range_minrel_tl
                \exp_not:n { ##1 }
                \exp_not:V \l_@@_range_maxrel_tl
                \exp_not:N \l_@@_range_max_fp }{
            \exp_not:N \prg_return_true:
        }{
            \exp_not:N \prg_return_false:
        }
    }
}
%    \end{macrocode}
%
% \subsection{Compute and typeset statistics tables}
%
%    \begin{macrocode}
\NewDocumentCommand \@@_IN:w { m u{;} u{;} m } {
    \ensuremath{ \left#1 \num{#2} \mathbin{;} \num{#3} \right#4 }
}

\cs_new_protected:Nn \@@_setshow:n {
    \seq_clear:N \l_@@_show_seq
    \clist_map_inline:nn {#1} {
        \tl_if_in:nnTF {##1} {-} {
            \@@_setshow_aux:w ##1 \q_stop
        }{
            \seq_put_right:Nn \l_@@_show_seq {##1}
        }
    }
}
\cs_new_protected:Npn \@@_setshow_aux:w #1 - #2 \q_stop {
    \int_step_inline:nnnn {#1} {1} {#2} {
        \seq_put_right:Nn \l_@@_show_seq {##1}
    }
}
\cs_new_protected_nopar:Nn \@@_set_if_shown:N {
    \seq_if_empty:NTF \l_@@_show_seq {
        \bool_set_true:N #1
    }{
        \seq_if_in:NVTF
                \l_@@_show_seq
                \l_@@_currange_int {
            \bool_set_true:N #1
        }{
            \bool_set_false:N #1
        }
    }
}

\int_new:N \l_@@_table_maxcols_int
\int_set:Nn \l_@@_table_maxcols_int {0}

\@@_keys_define:nn { table } {
    showonly    .value_required:n = true,
    showonly    .code:n = \@@_setshow:n{#1},

    showonly/hidden .value_required:n = true,
    showonly/hidden .code:n = {
                    \cs_set_protected:Nn
                            \@@_table_hidden_format:n
                            { #1 }
                },
    showonly/hidden .initial:n = ,

    showonly/shown  .value_required:n = true,
    showonly/shown  .code:n = {
                    \cs_set_protected:Nn
                            \@@_table_shown_format:n
                            { #1 }
                },
    showonly/shown  .initial:n = #1,

    maxcols     .clist_set:N  = \l_@@_table_maxcols_clist,
    maxcols     .value_required:n = true,
    maxcols     .initial:n  = ,

    tablesep    .tl_set:N   = \l_@@_table_sep_tl,
    tablesep    .value_required:n = true,
    tablesep    .initial:n  = \\,

    valign      .tl_set:N   = \l_@@_table_valign_tl,
    valign      .value_required:n = true,
    valign      .initial:n  = t,

    coltype     .tl_set:N   = \l_@@_table_coltype_tl,
    coltype     .value_required:n = true,

    headcoltype .tl_set:N   = \l_@@_table_headcoltype_tl,
    headcoltype .value_required:n = true,

    newline     .tl_set:N   = \l_@@_table_newline_tl,
    newline     .value_required:n = true,

    preline     .tl_set:N   = \l_@@_table_preline_tl,
    preline     .value_required:n = true,

    postline    .tl_set:N   = \l_@@_table_postline_tl,
    postline    .value_required:n = true,

    outline     .meta:n     = { preline={#1}, postline={#1} },
    outline     .value_required:n = true,

    frame       .choice:,
    frame/full  .meta:n     = { preline=\firsthline, postline=\lasthline,
                                newline=\\\hline,
                                headcoltype=|l|, coltype=c| },
    frame/full  .value_forbidden:n = true,

    frame/none  .meta:n     = { outline=, newline=\\,
                                headcoltype=l, coltype=c },
    frame/none  .value_forbidden:n = true,

    frame/clean .meta:n     = { preline=\firsthline, postline=\lasthline,
                                newline=\\,
                                headcoltype=l, coltype=c },
    frame/clean .initial:n  = ,
    frame/clean .value_forbidden:n = true,

    digits      .int_set:N  = \l_@@_table_round_int,
    digits      .initial:n  = 3,

    allcounts/format    .code:n = {
                    \cs_set_protected:Nn
                            \@@_table_allcounts_format:n
                            { #1 }
                },
    allcounts/format    .value_required:n = true,
    allcounts/format    .initial:n = { \num{#1} },

    allfreqs/format     .code:n = {
                    \cs_set_protected:Nn
                            \@@_table_allfreqs_format:n
                            { #1 }
                },
    allfreqs/format     .value_required:n = true,

    allfreqs/format/real .meta:n = {
                    allfreqs/format = \num{##1}
                },
    allfreqs/format/real .value_forbidden:n = true,

    allfreqs/format/percent .meta:n = {
                    allfreqs/format = \SI{\fp_eval:n{##1*100}}{\percent}
                },
    allfreqs/format/percent .initial:n = ,
    allfreqs/format/percent .value_forbidden:n = true,

    allfreqs/format/scaled .meta:n = {
                    allfreqs/format = \num{\fp_eval:n{##1*#1}}
                },
    allfreqs/format/scaled .value_required:n = true,
}

\cs_new:Nn \@@_define_row:nnn {
%    \end{macrocode}
%
%    \begin{itemize}
%        \item |#1| (tl): row name;
%        \item |#2| (bool): enabled by default
%        \item |#3| (tl): default header;
%    \end{itemize}
%
%    \begin{macrocode}
    \tl_new:c { l_@@_table_#1_name_tl }
    \bool_new:c { l_@@_table_#1_bool }
    \@@_keys_define:nn { table } {
        #1          .code:n = {
                        \bool_set_true:c { l_@@_table_#1_bool }
                        \quark_if_no_value:nF { ##1 } {
                            \@@_setup:nn { table } {
                                #1/header = { ##1 }
                            }
                        }
                    },
        #1          .default:n = \q_no_value,

        no#1        .code:n =
                        \bool_set_false:c { l_@@_table_#1_bool },
        no#1        .value_forbidden:n = true,

        #1/header   .tl_set:c = { l_@@_table_#1_name_tl },
        #1/header   .value_required:n = true,
        #1/header   .initial:n = { #3 },

        #1/format   .code:n = {
                        \cs_set_protected:cn
                                { _@@_table_#1_format:n }
                                { ##1 }
                    },
        #1/format   .value_required:n = true,
        #1/format   .initial:n = { ##1 },
    }
    \bool_set:cn { l_@@_table_#1_bool } { #2 }
}

\@@_define_row:nnn { values } \c_true_bool \valuename
\@@_define_row:nnn { counts } \c_false_bool \countname
\@@_define_row:nnn { frequencies }  \c_false_bool \freqname
\@@_define_row:nnn { icc }   \c_false_bool \iccname
\@@_define_row:nnn { icf }   \c_false_bool \icfname
\@@_define_row:nnn { dcc }   \c_false_bool \dccname
\@@_define_row:nnn { dcf }   \c_false_bool \dcfname

\@@_setup:nn { table } {
    values/format = \ensuremath{#1},
}

\cs_undefine:N \@@_define_row:nnn

\seq_new:N \l_@@_table_contents_seq
\tl_new:N \l_@@_table_preamble_tl

\tl_new:N \l_@@_table_values_tl
\tl_new:N \l_@@_table_counts_tl
\tl_new:N \l_@@_table_frequencies_tl
\tl_new:N \l_@@_table_icc_tl
\tl_new:N \l_@@_table_icf_tl
\tl_new:N \l_@@_table_dcc_tl
\tl_new:N \l_@@_table_dcf_tl

\fp_new:N \l_@@_table_curICF_fp
\fp_new:N \l_@@_table_prevICF_fp

\bool_new:N \l_@@_table_firstrow_bool

\seq_new:N \l_@@_store_values_seq
\seq_new:N \l_@@_store_counts_seq

\cs_generate_variant:Nn \keyval_parse:NNn { NNV }
\NewDocumentCommand \StatsTable { +O{} +m +O{} } {
    \group_begin:
%    \end{macrocode}
%
% Ensure some macros exist with sensible definitions
%
%    \begin{macrocode}
    \cs_if_exist:NF \firsthline {
        \cs_set_eq:NN \firsthline \hline
    }
    \cs_if_exist:NF \lasthline {
        \cs_set_eq:NN \lasthline \hline
    }
    \cs_if_exist:NF \IN {
        \cs_set_eq:NN \IN \@@_IN:w
    }
%    \end{macrocode}
%
% Handle optional settings
%
%    \begin{macrocode}
    \@@_setup:nn { table } { #1, #3 }
%    \end{macrocode}
%
% Get the data inline or from a variable
%
%    \begin{macrocode}
    \tl_if_single:nTF { #2 } {
%    \end{macrocode}
%
% Generate meaningful error by using the non-existent variable
%
%    \begin{macrocode}
        \cs_if_exist:NF #2 { #2 }
        \tl_set_eq:NN \l_@@_data_tl #2
    }{
        \tl_set:Nn \l_@@_data_tl { #2 }
    }
%    \end{macrocode}
%
% Define getters for some items of the table, to be used for instance to
% programmatically choose the formatting.
%
%    \begin{macrocode}
    \cs_set_nopar:Npn \getvalue {
        \seq_item:Nn \l_@@_store_values_seq
    }
    \cs_set_nopar:Npn \getcount {
        \seq_item:Nn \l_@@_store_count_seq
    }
%    \end{macrocode}
%
% Compute the total population count/frequency
%
%    \begin{macrocode}
    \fp_zero:N \l_@@_total_fp
    \keyval_parse:NNV
            \@@_table_count:n
            \@@_table_count:nn
            \l_@@_data_tl
%    \end{macrocode}
%
% Loop again and output the table
%
%    \begin{macrocode}
    \@@_table_start:
    \fp_zero:N \l_@@_table_prevICF_fp
    \keyval_parse:NNV
            \@@_table_make:n
            \@@_table_make:nn
            \l_@@_data_tl
    \@@_table_end:
%    \end{macrocode}
%
% Done
%
%    \begin{macrocode}
    \group_end:
}
%    \end{macrocode}
%
% table building functions
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_table_start: {
%    \end{macrocode}
%
% Init column count and fetch the next maxcols value (or keep the current one if
% we reached the end of the list).
%
%    \begin{macrocode}
    \int_zero:N \l_@@_nbvals_int
    \clist_pop:NNT \l_@@_table_maxcols_clist \l_tmpa_tl {
        \int_set:Nn \l_@@_table_maxcols_int { \l_tmpa_tl }
    }
%    \end{macrocode}
%
% Start rows with headers
%
%    \begin{macrocode}
    \clist_map_inline:nn { values, counts, frequencies, icc, icf, dcc, dcf } {
        \tl_set:cx { l_@@_table_##1_tl } {
            \exp_not:N \ensuremath { \exp_not:N \hbox {
                \exp_not:c { l_@@_table_##1_name_tl }
            } }
        }
    }
}
\cs_new_protected_nopar:Nn \@@_table_end: {
%    \end{macrocode}
%
% Build-up the table preamble
%
%    \begin{macrocode}
    \tl_set:Nx \l_@@_table_preamble_tl {
        \exp_not:n { \begin{array}[ }
            \exp_not:V \l_@@_table_valign_tl
        \exp_not:n { ] }
                { \exp_not:V \l_@@_table_headcoltype_tl
                  \prg_replicate:nn { \l_@@_nbvals_int }
                    { \exp_not:V \l_@@_table_coltype_tl } }
    }
%    \end{macrocode}
%
% Add each row if needed.
%
%    \begin{macrocode}
    \seq_clear:N \l_@@_table_contents_seq
    \clist_map_inline:nn { values, counts, icc, dcc, frequencies, icf, dcf } {
        \bool_if:cT { l_@@_table_##1_bool } {
            \seq_put_right:Nv
                    \l_@@_table_contents_seq
                    { l_@@_table_##1_tl }
        }
    }
    $\tl_use:N \l_@@_table_preamble_tl
        \l_@@_table_preline_tl
        \seq_use:Nn
                \l_@@_table_contents_seq
                { \l_@@_table_newline_tl }
        \\ \l_@@_table_postline_tl
    \end{array}$
}
%    \end{macrocode}
%
% Counting auxiliaries
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_table_count:n {
    \@@_table_count:nn {} { 1 }
}
\cs_new_protected_nopar:Nn \@@_table_count:nn {
    \fp_add:Nn \l_@@_total_fp { #2 }
}
%    \end{macrocode}
%
% Accumulating content
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_table_make:n {
    \@@_table_make:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_table_make:nn {
%    \end{macrocode}
%
% Maybe close the table and create a new one
%
%    \begin{macrocode}
    \int_compare:nT
            { 0 < \l_@@_table_maxcols_int
                = \l_@@_nbvals_int } {
        \@@_table_end:
        \tl_use:N \l_@@_table_sep_tl
        \@@_table_start:
    }
    \int_incr:N \l_@@_nbvals_int
    \int_incr:N \l_@@_currange_int
    \fp_add:Nn \l_@@_curtotal_fp { #2 }
%    \end{macrocode}
%
% Hidden or not
%
%    \begin{macrocode}
    \@@_set_if_shown:N \l_tmpa_bool
    \tl_set:Nx \l_tmpa_tl {
        \exp_not:n { & \tl_set:Nn \currentcolumn } {
            \int_use:N \l_@@_currange_int
        }
    }
    \bool_if:NTF \l_tmpa_bool {
        \tl_put_right:Nn \l_tmpa_tl
            {\@@_table_shown_format:n}
    }{
        \tl_put_right:Nn \l_tmpa_tl
            {\@@_table_hidden_format:n}
    }
%    \end{macrocode}
%
% Values
%
%    \begin{macrocode}
    \seq_put_right:Nn \l_@@_store_values_seq { #1 }
    \bool_if:NT \l_@@_table_values_bool {
        \tl_put_right:Nx \l_@@_table_values_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n {
                    \@@_table_values_format:n { #1 }
                }
            }
        }
    }
%    \end{macrocode}
%
% Counts
%
%    \begin{macrocode}
    \seq_put_right:Nx \l_@@_store_counts_seq { \fp_eval:n {#2} }
    \bool_if:NT \l_@@_table_counts_bool {
        \tl_put_right:Nx \l_@@_table_counts_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n {
                    \@@_table_counts_format:n {
                        { \@@_table_allcounts_format:n { #2 } }
                    }
                }
            }
        }
    }
%    \end{macrocode}
%
% ICC
%
%    \begin{macrocode}
    \bool_if:NT \l_@@_table_icc_bool {
        \tl_put_right:Nx \l_@@_table_icc_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n { \@@_table_icc_format:n }
                {
                    \exp_not:n{ \@@_table_allcounts_format:n }
                        { \fp_use:N \l_@@_curtotal_fp }
                }
            }
        }
    }
%    \end{macrocode}
%
% DCC ( = 1 - ICC + curcount )
%
%    \begin{macrocode}
    \bool_if:NT \l_@@_table_dcc_bool {
        \tl_put_right:Nx \l_@@_table_dcc_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n { \@@_table_dcc_format:n }
                {
                    \exp_not:n{ \@@_table_allcounts_format:n }
                    {
                        \fp_eval:n {
                            \l_@@_total_fp
                                - \l_@@_curtotal_fp
                                + #2
                        }
                    }
                }
            }
        }
    }
%    \end{macrocode}
%
% Frequencies (we compute them from the ICFs so that rounded freqs add up to 1)
%
%    \begin{macrocode}
    \fp_set:Nn \l_@@_table_curICF_fp {
        round(\l_@@_curtotal_fp
                / \l_@@_total_fp,
              \l_@@_table_round_int)
    }
    \bool_if:NT \l_@@_table_frequencies_bool {
        \tl_put_right:Nx \l_@@_table_frequencies_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n { \@@_table_frequencies_format:n }
                {
                    \exp_not:n{ \@@_table_allfreqs_format:n }
                    {
                        \fp_eval:n {
                            \l_@@_table_curICF_fp
                                - \l_@@_table_prevICF_fp
                        }
                    }
                }
            }
        }
    }
%    \end{macrocode}
%
% ICF
%
%    \begin{macrocode}
    \bool_if:NT \l_@@_table_icf_bool {
        \tl_put_right:Nx \l_@@_table_icf_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n { \@@_table_icf_format:n }
                {
                    \exp_not:n{ \@@_table_allfreqs_format:n }
                        { \fp_to_decimal:N \l_@@_table_curICF_fp }
                }
            }
        }
    }
%    \end{macrocode}
%
% DCF ( = 1 - ICF + curfreq = 1 - prevICF )
%
%    \begin{macrocode}
    \bool_if:NT \l_@@_table_dcf_bool {
        \tl_put_right:Nx \l_@@_table_dcf_tl {
            \exp_not:V \l_tmpa_tl {
                \exp_not:n { \@@_table_dcf_format:n }
                {
                    \exp_not:n{ \@@_table_allfreqs_format:n }
                    {
                        \fp_eval:n {
                            1 - \l_@@_table_prevICF_fp
                        }
                    }
                }
            }
        }
    }
%    \end{macrocode}
%
% Prepare for next iteration
%
%    \begin{macrocode}
    \fp_set_eq:NN
        \l_@@_table_prevICF_fp
        \l_@@_table_curICF_fp
}
%    \end{macrocode}
%
% \subsection{Compute and typeset statistics graphics}
%
%    \begin{macrocode}
\cs_new_protected:Nn \@@_make_forwarded_key:nnnn {
%    \end{macrocode}
%
% \begin{itemize}
%   \item |#1| (tl):    common prefix
%   \item |#2| (tl):    middle
%   \item |#3| (clist): replacements
%   \item |#4| (tl):    common suffix
% \end{itemize}
%
%    \begin{macrocode}
    \tl_clear:N \l_tmpa_tl
    \clist_map_inline:nn {#3} {
        \tl_put_right:Nx \l_tmpa_tl {
            \exp_not:n {#1}
            \tl_if_empty:nF {#1} { \tl_if_empty:nF {##1} {\exp_not:N /} }
            \exp_not:n {##1}
            \tl_if_empty:nF {#4} { \tl_if_empty:nF {##1} {\exp_not:N /} }
            \exp_not:n {#4,}
        }
    }
    \tl_set:Nx \l_tmpb_tl {
        \exp_not:n {#1}
        \tl_if_empty:nF {#1} { \tl_if_empty:nF {#2} {\exp_not:N /} }
        \exp_not:n {#2}
        \tl_if_empty:nF {#4} { \tl_if_empty:nF {#2} {\exp_not:N /} }
        \exp_not:n {#4}
    }
    \use:x {
        \exp_not:n { \@@_keys_define:nn { graph } }
        {
            \exp_not:V \l_tmpb_tl \exp_not:n { .default:n = \q_no_value, }
            \exp_not:V \l_tmpb_tl
                \exp_not:n { .code:n = \@@_forwarded_key:nn }
                    { \exp_not:V \l_tmpa_tl }
                    { \exp_not:n { ##1 } }
        }
    }
}
\cs_new_protected:Nn \@@_forwarded_key:nn {
    \quark_if_no_value:nTF { #2 } {
        \@@_setup:nn { graph } { #1 }
    }{
        \clist_set:Nn \l_tmpa_clist { #1,{} }
        \use:x {
            \exp_not:n { \@@_setup:nn { graph } } {
                \clist_use:Nn \l_tmpa_clist { = {#2}, }
            }
        }
    }
}
\cs_new_protected_nopar:Nn \@@_forward_keys:nn {
%    \end{macrocode}
%
% \begin{itemize}
%   \item |#1| (clist): destination prefixes
%   \item |#2| (clist): keys
% \end{itemize}
%
%    \begin{macrocode}
    \clist_map_inline:nn {#2} {
        \@@_make_forwarded_key:nnnn {} {} { #1 } { ##1 }
    }
}

\cs_new:Nn \@@_create_append_reset:nn {
%    \end{macrocode}
%
% \begin{itemize}
%   \item |#1| (tl): key basename
%   \item |#2| (var): suffix of variable to store options into
% \end{itemize}
%
%    \begin{macrocode}
    \tl_new:c { l_@@_graph_#2_tl }
    \@@_keys_define:nn { graph } {
        #1          .value_required:n = true,
        #1          .code:n = \tl_put_right:cn
                                { l_@@_graph_#2_tl }
                                { ##1, },

        #1/reset    .value_forbidden:n = true,
        #1/reset    .code:n = \tl_clear:c
                                { l_@@_graph_#2_tl },
    }
}

\cs_new:Nn \@@_DO:nn { \@@_create_append_reset:nn {#1}{options_#2} }

\cs_new:Nn \@@_define_unit:nn {
%    \end{macrocode}
%
% \begin{itemize}
%   \item |#1| (tl): unit name (plural)
%   \item |#2| (tl): graph type
% \end{itemize}
%
%    \begin{macrocode}
    \@@_DO:nn { #2/#1/axis }       { #2_#1axis }
    \@@_keys_define:nn { graph } {
        #2/#1       .code:n = {
                        \tl_set:cn {l_@@_graph_#2_unit_tl} { #1 }
                        \quark_if_no_value:nF { ##1 } {
                            \@@_setup:nn { graph }{ #2/#1/label = { ##1 } }
                        }
                    },
        #2/#1       .default:n = \q_no_value,

        #2/#1/label .meta:n = { #2/#1/axis = { label = { ##1 } } },
        #2/#1/label .value_required:n = true,

        #2/#1/format .code:n = {
                        \cs_set_protected:cn
                                { @@_graph_#2_#1_format:n }
                                { ##1 }
                    },
        #2/#1/format .value_required:n = true,

        #2/#1/margin .tl_set:c = l_@@_graph_#2_#1_vmargin_tl,
        #2/#1/margin .value_required:n = true,
    }
}

\@@_DO:nn { picture }                  { pic }
\@@_DO:nn { axissystem }               { system }

\@@_DO:nn { histogram/areas/style }    { areas }
\@@_DO:nn { histogram/legend/options } { legend }

\clist_map_inline:nn { histogram, cumulative, comb } {
    \@@_define_unit:nn                 { counts } { #1 }
    \@@_define_unit:nn                 { frequencies } { #1 }
    \@@_DO:nn { #1/style }             { #1 }
    \@@_DO:nn { #1/values/axis }       { #1_xaxis }
    \@@_keys_define:nn { graph/#1 } {
        values/margin .value_required:n = true,
        values/margin .tl_set:c = l_@@_graph_#1_hmargin_tl,

        values/label .meta:n = { values/axis = { label = { ##1 } } },
        values/label .value_required:n = true,

        values/format .code:n = { \cs_set_protected:cn
                                    {@@_graph_#1_values_format:n} { ##1 }
        },
        values/format .value_required:n = true,

        frequencies/format/real .meta:n = {
            frequencies/format = {
                \num[round-mode=places,round-precision=##1]{####1}
            }
        },
        frequencies/format/real .default:n = 1,

        frequencies/format/percent .meta:n = {
            frequencies/format = {
                \SI[round-mode=places,round-precision=##1]{
                    \fp_eval:n{####1*100}
                }{\percent}
            }
        },
        frequencies/format/percent .default:n = 1,
    }
    \@@_make_forwarded_key:nnnn {#1/values}{}{label}{}
    \clist_map_inline:nn { axis, axis/reset, label, margin, format } {
        \@@_make_forwarded_key:nnnn {#1}{x}{values}{##1}
        \@@_make_forwarded_key:nnnn {#1}{y}{counts, frequencies}{##1}
    }
}

\cs_undefine:N \@@_DO:nn
\cs_undefine:N \@@_define_unit:nnn

\@@_forward_keys:nn { histogram, cumulative, comb } {
    values, values/label, values/margin, values/format,
    values/axis, values/axis/reset,
    x/label, x/axis, x/axis/reset, x/margin, x/format,
    counts, counts/label, counts/margin, counts/format,
    counts/axis, counts/axis/reset,
    frequencies, frequencies/label, frequencies/margin,
    frequencies/format, frequencies/format/real, frequencies/format/percent,
    frequencies/axis, frequencies/axis/reset,
    y/label, y/axis, y/axis/reset, y/margin, y/format,
    style, style/reset
}

\@@_create_append_reset:nn { tikzinfo' } { userpreinfo }
\@@_create_append_reset:nn { tikzinfo }  { userpostinfo }

\cs_undefine:N \@@_forward_keys:nn
\cs_undefine:N \@@_make_forwarded_key:nnnn
\cs_undefine:N \@@_create_append_reset:nn

\@@_keys_define:nn { graph } {
    showonly    .value_required:n = true,
    showonly    .code:n = \@@_setshow:n{#1},

    height      .value_required:n = true,
    height      .meta:n = { axissystem = { height = { #1 } } },

    width       .value_required:n = true,
    width       .meta:n = { axissystem = { width = { #1 } } },

    cumulative  .bool_set:N = \l_@@_graph_cumulative_bool,
    cumulative  .default:n = true,

    decreasing  .bool_set:N = \l_@@_graph_decreasing_bool,
    decreasing  .default:n = true,

    histogram/areas .bool_set:N = \l_@@_graph_areas_bool,
    histogram/areas .default:n = true,

    histogram/legend/label .value_required:n = true,
    histogram/legend/label .meta:n = {
                histogram/legend/options = {label={#1}} },

    histogram/legend/area .value_required:n = true,
    histogram/legend/area .meta:n = {
                histogram/legend/h = (#1)/\width },

    histogram/legend    .value_required:n = true,
    histogram/legend    .code:n = {
                \@@_setup:nn { graph / histogram/legend  } {
                    #1
                }
            },

    histogram/y/autostep .value_required:n = true,
    histogram/y/autostep .meta:n = {
                histogram/counts/autostep = {#1},
                histogram/frequencies/autostep = {#1},
                histogram/legend/area = {#1},
            },
}
\tl_map_inline:nn {xywh} {
    \@@_keys_define:nn { graph / histogram / legend } {
        #1 .value_required:n = true,
        #1 .tl_set:c = {l_@@_graph_legend_#1_tl},
    }
}
\clist_map_inline:nn { counts, frequencies } {
    \@@_keys_define:nn { graph/histogram/#1 } {
        autostep .default:n = 1,
        autostep .meta:n = { axis = {
                grid = { compute~step =
                    \group_begin:
                    \tl_set:Nx \total { \fp_to_decimal:N \l_@@_total_fp }
                    \fp_gset:Nn \g_tmpa_fp { ##1 }
                    \group_end:
                    \tl_set:Nx \tikz@lib@dv@step {
                        \fp_eval:n {\g_tmpa_fp / \g_@@_graph_xstep_fp }
                    }
                }
        }},
    }
}

\@@_setup:nn { graph }{
    width = 0.75\columnwidth,
    cumulative = false,
    decreasing = false,

    values/axis = {
        label = \valuename,
        ticks~and~grid={many, integer~minor~steps}
    },
    values/margin = \xstep / 2,
    values/format = \num{#1},

    y/margin = \range/10,

    counts/format = { \num{#1} },
    counts/axis = { ticks~and~grid={
        many, int~about~strategy, integer~minor~steps*,
        } },
    comb/counts/label = \countname,
    cumulative/counts/label = \ccountname,

    frequencies/format/percent,
    frequencies/axis = { ticks~and~grid=many },
    comb/frequencies/label = \freqname,
    cumulative/frequencies/label = \cfreqname,

    histogram/y/axis/reset,
    histogram/y/axis = {ticks = none},
    histogram/y/autostep = 1,
    histogram/legend = { x=, y=0, w=\xstep },
    histogram/style  = {
        every~path/.prefix~style=fill,
        semithick, black, fill=black, fill~opacity=0.1
    },
    histogram/areas,
    histogram/areas/style = { auto, font=\small },

    comb/style  = { ultra~thick },

    counts,

    picture = {
        baseline = (current~bounding~box.center),
        label~position = right,
    },
}

\tl_const:Nn \c_@@_graph_savexstep_tl {
    grid = { compute~step/.append = {
        \cs_if_eq:NNF \tikz@lib@dv@step \relax {
            \pgfkeysgetvalue
                {/tikz/data~visualization/minor~steps~between~steps}
                \l_tmpa_tl
            \fp_gset:Nn \g_@@_graph_xstep_fp {
                \tikz@lib@dv@step
                / (\fp_max:nn{0\l_tmpa_tl + 1}{1})
            }
        }
    }}
}
%    \end{macrocode}
%
% To detect that the user didn't set |minor steps between steps| himself after
% having used |integer minor steps| (which can be a default setting), we add a
% handler to the key that sets its value but also empties
% \cs{l_@@_graph_maxminor_tl} so that we do not overwrite anything.
%
%    \begin{macrocode}
\tl_new:N \l_@@_graph_maxminor_tl
\int_new:N \l_@@_graph_minorsteps_int
\fp_new:N \l_@@_graph_ims_step_fp
\fp_new:N \l_@@_graph_ims_range_fp
\fp_new:N \l_@@_graph_ims_threshold_fp
\tikzdatavisualizationset{
integer~minor~steps/.style={
    /utils/exec = \tl_set:Nn \l_@@_graph_maxminor_tl {#1},
    minor~steps~between~steps/.code=
            \tl_clear:N \l_@@_graph_maxminor_tl
            \pgfkeyssetvalue
                {/tikz/data~visualization/minor~steps~between~steps}
                {##1} ,
    compute~step/.append = {
        \tl_set_eq:NN \l_tmpa_tl \tikz@lib@dv@step
        \tl_if_empty:NT \l_@@_graph_maxminor_tl {
            \tl_set_eq:NN \l_tmpa_tl \relax
        }
        \tl_if_eq:NNF \l_tmpa_tl \relax {
            \fp_set:Nn \l_@@_graph_ims_step_fp { \l_tmpa_tl }
            \tikz@lib@dv@mapper.get~in~range~interval()
            \pgfdvinrangeinterval.get~min~and~max()
            \pgfdvmathexitbyscientificformat \l_tmpa_tl \pgfdvmin
            \pgfdvmathexitbyscientificformat \l_tmpb_tl \pgfdvmax
            \fp_set:Nn \l_@@_graph_ims_range_fp { \l_tmpb_tl - \l_tmpa_tl }
            \fp_set:Nn \l_@@_graph_ims_threshold_fp {
                \fp_max:nn {
                    \l_@@_graph_ims_step_fp * (\l_@@_graph_maxminor_tl)
                }{
                    \l_@@_graph_ims_range_fp
                }
            }
            \int_set:Nn \l_@@_graph_minorsteps_int
                    { \fp_to_int:N \l_@@_graph_ims_step_fp }
            \bool_while_do:nn {
                \fp_compare_p:n {
                    \l_@@_graph_minorsteps_int * \l_@@_graph_ims_range_fp
                    > \l_@@_graph_ims_threshold_fp
                }
            }{
                \tl_map_inline:nn {{2}{5}{10}} {
                    \fp_compare:nF {
                        \l_@@_graph_minorsteps_int * \l_@@_graph_ims_range_fp
                        > \l_@@_graph_ims_threshold_fp * ##1
                    }{
                        \int_compare:nT {
                            \int_mod:nn{\l_@@_graph_minorsteps_int}{##1} = 0
                        }{
                            \int_set:Nn
                                \l_@@_graph_minorsteps_int
                                { \l_@@_graph_minorsteps_int / ##1 }
                            \tl_map_break:
                        }
                    }
                }
                \fp_compare:nT {
                    \l_@@_graph_minorsteps_int * \l_@@_graph_ims_range_fp
                    > \l_@@_graph_ims_threshold_fp
                }{
                    \tl_map_inline:nn {{3}{2}{5}{\l_@@_graph_minorsteps_int}} {
                        \int_compare:nT {
                            \int_mod:nn{\l_@@_graph_minorsteps_int}{##1} = 0
                        }{
                            \int_set:Nn
                                \l_@@_graph_minorsteps_int
                                { \l_@@_graph_minorsteps_int / ##1 }
                            \tl_map_break:
                        }
                    }
                }
            }
            \int_compare:nNnTF \l_@@_graph_minorsteps_int > 1 {
                \use:x { \exp_not:n {
                    \pgfkeyssetvalue
                    {/tikz/data~visualization/minor~steps~between~steps}
                    }
                    { \int_eval:n {\l_@@_graph_minorsteps_int-1} }
                }
            }{
                \pgfkeyssetvalue
                    {/tikz/data~visualization/minor~steps~between~steps}
                    {}
            }
            \tl_clear:N \l_@@_graph_maxminor_tl
        }
    }
},
integer~minor~steps/.default=50,
integer~minor~steps*/.style={
    compute~step/.append = {
        \tl_set_eq:NN \l_tmpa_tl \tikz@lib@dv@step
        \tl_if_eq:NNF \l_tmpa_tl \relax {
            \fp_compare:nT { \l_tmpa_tl < 1 } {
                \tl_set:Nx \tikz@lib@dv@step {1}
            }
        }
    },
    integer~minor~steps=#1,
},
integer~minor~steps*/.default=50,
}
%    \end{macrocode}
%
% First define a lot of variables:
%
%    \begin{macrocode}
\bool_new:N \l_@@_graph_allranges_bool

\fp_new:N \l_@@_graph_curvalue_fp
\fp_new:N \l_@@_graph_curheight_fp
\fp_new:N \l_@@_graph_prevheight_fp
\fp_new:N \l_@@_graph_maxheight_fp
\fp_new:N \l_@@_graph_minvalue_fp
\fp_new:N \l_@@_graph_maxvalue_fp
\fp_new:N \g_@@_graph_xstep_fp
\int_new:N \g_@@_graph_last_int

\tl_new:N \l_@@_graph_tikzdata_tl
\tl_new:N \l_@@_graph_tikzinfo_tl
\clist_new:N \l_@@_graph_tikzincludex_clist
\clist_new:N \l_@@_graph_tikzincludey_clist
\tl_new:N \l_@@_graph_tikzpicture_tl
%    \end{macrocode}
%
% No scale for counts, divide by total for freqs
%
%    \begin{macrocode}
\fp_new:N \l_@@_graph_scale_fp
\fp_new:N \l_@@_graph_counts_scale_fp
\fp_new:N \l_@@_graph_frequencies_scale_fp
\fp_set:Nn \l_@@_graph_counts_scale_fp { 1 }


\NewDocumentCommand \StatsGraph { +O{} +m +O{} } {
    \group_begin:
    \int_gincr:N \g_@@_graph_last_int
%    \end{macrocode}
%
% Read saved x step, for automatic margin and histogram y step
%
%    \begin{macrocode}
    \tl_set:Nx \l_tmpa_tl {
        \exp_not:n { g_@@_graph_xstep_ }
        \int_use:N \g_@@_graph_last_int
        \exp_not:n { _tl }
    }
    \tl_if_exist:cTF { \l_tmpa_tl } {
        \fp_gset:Nn \g_@@_graph_xstep_fp
            { \tl_use:c {\l_tmpa_tl} }
    }{
        \fp_gset:Nn \g_@@_graph_xstep_fp { \c_one_int }
    }
%    \end{macrocode}
%
% Handle optional settings
%
%    \begin{macrocode}
    \@@_setup:nn { graph } { #1, #3 }
%    \end{macrocode}
%
% Get the data inline or from a variable
%
%    \begin{macrocode}
    \tl_if_single:nTF { #2 } {
%    \end{macrocode}
%
% Generate meaningful error by using the non-existent variable.
%
%    \begin{macrocode}
        \cs_if_exist:NF #2 { #2 }
        \tl_set_eq:NN \l_@@_data_tl #2
    }{
        \tl_set:Nn \l_@@_data_tl { #2 }
    }
%    \end{macrocode}
%
% Zero the maximum height in the graph, and setup min and max values.
%
%    \begin{macrocode}
    \fp_zero:N \l_@@_graph_maxheight_fp
    \fp_set:Nn \l_@@_graph_minvalue_fp {inf}
    \fp_set:Nn \l_@@_graph_maxvalue_fp {-inf}
%    \end{macrocode}
%
% The following loop does 2 things:
% \begin{itemize}
%   \item Counting the number of ranges and the total population count
%   \item Detecting whether the ranges are intervals or single numbers
% \end{itemize}
%
%    \begin{macrocode}
    \fp_zero:N \l_@@_total_fp
    \int_zero:N \l_@@_nbvals_int
    \bool_set_true:N \l_@@_graph_allranges_bool
    \keyval_parse:NNV
            \@@_graph_prepare:n
            \@@_graph_prepare:nn
            \l_@@_data_tl
%    \end{macrocode}
%
% The remainder is different whether we do histogram, cumulative, or comb
%
%    \begin{macrocode}
    \tl_clear:N \l_@@_graph_tikzdata_tl
    \tl_clear:N \l_@@_graph_tikzinfo_tl
    \int_zero:N \l_@@_currange_int
    \bool_if:NTF \l_@@_graph_allranges_bool {
        \bool_if:NTF \l_@@_graph_cumulative_bool {
%    \end{macrocode}
%
% We draw a cumulative distribution function
%
%    \begin{macrocode}
            \@@_graph_dopicture_cumulative:
        }{
%    \end{macrocode}
%
% We draw an histogram
%
%    \begin{macrocode}
            \@@_graph_dopicture_hist:
        }
    }{
%    \end{macrocode}
%
% We draw a comb graph
%
%    \begin{macrocode}
        \@@_graph_dopicture_comb:
    }
%    \end{macrocode}
%
% Write xstep info to aux file
%
%    \begin{macrocode}
    \iow_now:Nx \@auxout {
        \exp_not:n {
            \ExplSyntaxOn
            \tl_gset:cn
        }
        {
            \exp_not:n {g_@@_graph_xstep_}
            \int_use:N \g_@@_graph_last_int
            \exp_not:n {_tl}
        }
        {
            \fp_to_decimal:N \g_@@_graph_xstep_fp
        }
        \exp_not:n {
            \ExplSyntaxOff
        }
    }
    \group_end:
}
%    \end{macrocode}
%
% First pass
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_graph_prepare:n {
    \@@_graph_prepare:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_graph_prepare:nn {
    \int_incr:N \l_@@_nbvals_int
    \fp_add:Nn \l_@@_total_fp { #2 }
    \exp_args:Nx \tl_if_eq:nnF { \tl_head:n {#1} }{ \IN } {
        \bool_set_false:N \l_@@_graph_allranges_bool
    }
}
%    \end{macrocode}
%
% Shared utility functions
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_graph_addpoint:nnn {
    \tl_put_right:Nx \l_@@_graph_tikzdata_tl {
        \exp_not:N \pgfkeys {
            \exp_not:n { /data~point/name = #1 }
                \int_use:N \l_@@_currange_int
            \exp_not:n { ,/data~point/x = } \fp_eval:n { #2 }
            \exp_not:n { ,/data~point/y = } \fp_eval:n { #3 }
        }
        \exp_not:n { \pgfdatapoint }
    }
}
\cs_new_protected_nopar:Nn \@@_graph_outlier: {
    \tl_put_right:Nn \l_@@_graph_tikzdata_tl {
        \pgfkeys{/data~point/outlier = true}
        \pgfdatapoint
        \pgfkeys{/data~point/outlier = }
    }
}
\cs_new_protected_nopar:Nn \@@_graph_setup:n {
    \fp_set_eq:Nc \l_@@_graph_hmargin_tl {l_@@_graph_#1_hmargin_tl}
    \tl_set_eq:Nc \l_@@_graph_unit_tl { l_@@_graph_#1_unit_tl }
    \tl_set_eq:Nc \l_@@_graph_vmargin_tl
        {l_@@_graph_#1_ \l_@@_graph_unit_tl _vmargin_tl}
    \tl_set_eq:Nc
        \l_@@_graph_options_yaxis_tl
        {l_@@_graph_options_#1_ \l_@@_graph_unit_tl axis_tl}
    \cs_set_eq:Nc
        \@@_graph_y_format:n
        {@@_graph_#1_ \l_@@_graph_unit_tl _format:n}
    \cs_set_eq:Nc
        \@@_graph_values_format:n
        {@@_graph_#1_values_format:n}
    \fp_set_eq:NN
        \l_@@_graph_frequencies_scale_fp
        \l_@@_total_fp
    \fp_set_eq:Nc
        \l_@@_graph_scale_fp
        {l_@@_graph_ \l_@@_graph_unit_tl _scale_fp}
}
\cs_new_protected_nopar:Nn \@@_graph_update_minmaxval:NN {
    \fp_set:Nn \l_@@_graph_minvalue_fp {
        min( \l_@@_graph_minvalue_fp, #1 )
    }
    \fp_set:Nn \l_@@_graph_maxvalue_fp {
        max( \l_@@_graph_maxvalue_fp, #2 )
    }
}
\cs_new_protected_nopar:Nn \@@_graph_update_maxheight: {
    \fp_set:Nn \l_@@_graph_maxheight_fp {
        max( \l_@@_graph_maxheight_fp , \l_@@_graph_curheight_fp )
    }
}
\cs_new_protected_nopar:Nn \@@_graph_handle_hmargin: {
    \group_begin:
    \tl_set:Nx \min { \fp_to_decimal:N \l_@@_graph_minvalue_fp }
    \tl_set:Nx \max { \fp_to_decimal:N \l_@@_graph_maxvalue_fp }
    \tl_set:Nx \range {
        \fp_eval:n { \l_@@_graph_maxvalue_fp - \l_@@_graph_minvalue_fp }
    }
    \tl_set:Nx \xstep { \fp_to_decimal:N \g_@@_graph_xstep_fp }
    \exp_args:NNV \fp_gset:Nn \g_tmpa_fp \l_@@_graph_hmargin_tl
    \group_end:
    \clist_put_right:Nx \l_@@_graph_tikzincludex_clist {
        \fp_eval:n { \l_@@_graph_minvalue_fp - \g_tmpa_fp }
    }
    \clist_put_right:Nx \l_@@_graph_tikzincludex_clist {
        \fp_eval:n { \l_@@_graph_maxvalue_fp + \g_tmpa_fp }
    }
}
\cs_new_protected_nopar:Nn \@@_graph_handle_vmargin: {
    \group_begin:
    \tl_set:Nn \min { 0 }
    \tl_set:Nx \max { \fp_to_decimal:N \l_@@_graph_maxheight_fp }
    \tl_set_eq:NN \range \max
    \exp_args:NNV \fp_gset:Nn \g_tmpa_fp \l_@@_graph_vmargin_tl
    \group_end:
    \clist_put_right:Nx \l_@@_graph_tikzincludey_clist {
        \fp_eval:n { \l_@@_graph_maxheight_fp + \g_tmpa_fp }
    }
}
%    \end{macrocode}
%
% Second pass, histogram
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_graph_dopicture_hist: {
    \@@_graph_setup:n {histogram}
%    \end{macrocode}
%
% Loop through the list again to fill tikz data and labels
%
%    \begin{macrocode}
    \keyval_parse:NNV
            \@@_graph_make_hist:n
            \@@_graph_make_hist:nn
            \l_@@_data_tl
%    \end{macrocode}
%
% Maybe add a legend
%
%    \begin{macrocode}
    \tl_if_empty:NF \l_@@_graph_legend_x_tl {
        \group_begin:
        \tl_set:Nx \min { \fp_to_decimal:N \l_@@_graph_minvalue_fp }
        \tl_set:Nx \max { \fp_to_decimal:N \l_@@_graph_maxvalue_fp }
        \tl_set:Nx \range {
            \fp_eval:n { \l_@@_graph_maxvalue_fp - \l_@@_graph_minvalue_fp }
        }
        \tl_set:Nx \xstep { \fp_to_decimal:N \g_@@_graph_xstep_fp }
        \exp_args:NNV \fp_gset:Nn \g_tmpa_fp \l_@@_graph_legend_x_tl
        \exp_args:NNV \fp_gset:Nn \g_tmpb_fp \l_@@_graph_legend_w_tl
        \group_end:
        \tl_set:Nx \l_@@_graph_legend_x_tl { \fp_to_decimal:N \g_tmpa_fp }
        \tl_set:Nx \l_@@_graph_legend_w_tl { \fp_to_decimal:N \g_tmpb_fp }

        \group_begin:
        \tl_set:Nn \min { 0 }
        \tl_set:Nx \max { \fp_to_decimal:N \l_@@_graph_maxheight_fp }
        \tl_set_eq:NN \range \max
        \tl_set:Nx \xstep { \fp_to_decimal:N \g_@@_graph_xstep_fp }
        \tl_set_eq:NN \width \l_@@_graph_legend_w_tl
        \tl_set:Nx \total { \fp_to_decimal:N \l_@@_total_fp }
        \exp_args:NNV \fp_gset:Nn \g_tmpb_fp \l_@@_graph_legend_h_tl
        \tl_set:Nx \height { \fp_to_decimal:N \g_tmpb_fp }
        \exp_args:NNV \fp_gset:Nn \g_tmpa_fp \l_@@_graph_legend_y_tl
        \group_end:

        \tl_put_right:Nx \l_@@_graph_tikzinfo_tl {
            \exp_not:n { \path (visualization~cs }
            \token_to_str:N : \exp_not:n { x= }
            \exp_not:V \l_@@_graph_legend_x_tl
            \exp_not:n { ,y= }
            \fp_to_decimal:N \g_tmpa_fp
            \exp_not:n { ) coordinate (LSW) (visualization~cs }
            \token_to_str:N : \exp_not:n { x= }
            \fp_eval:n {
                \l_@@_graph_legend_x_tl +
                \l_@@_graph_legend_w_tl
            }
            \exp_not:n { ,y= }
            \fp_eval:n { \g_tmpa_fp + \g_tmpb_fp }
            \exp_not:n { ) coordinate (LNE);
                \node[ fit=(LSW)~(LNE), draw, inner~sep=0pt,
            }
            \exp_not:V \l_@@_graph_options_histogram_tl
            \exp_not:N ,
            \exp_not:V \l_@@_graph_options_legend_tl
            \exp_not:n { ] {}; }
        }
    }
%    \end{macrocode}
%
% Create the picture itself
%
%    \begin{macrocode}
    \@@_graph_handle_hmargin:
    \@@_graph_handle_vmargin:
    \tl_set:Nx \l_@@_graph_tikzpicture_tl {
        \exp_not:n { \begin{tikzpicture}[ }
            \exp_not:V \l_@@_graph_options_pic_tl
        \exp_not:n { ] \datavisualization
                [scientific~axes = } {
                        \exp_not:V
                            \l_@@_graph_options_system_tl
                    }
        \exp_not:n { , x~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludex_clist
                    }
                    \exp_not:n { , ticks = { tick~typesetter/.code = {
                        $\@@_graph_values_format:n { \fp_eval:n{####1} }$ }}, }
                    \exp_not:V
                        \l_@@_graph_options_histogram_xaxis_tl
                    \exp_not:n { , }
                    \exp_not:V
                        \c_@@_graph_savexstep_tl
                }
        \exp_not:n { , y~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludey_clist
                    }
                    \exp_not:n { , }
                    \exp_not:V
                        \l_@@_graph_options_yaxis_tl
                }
        \exp_not:n { , visualize~as~line = histogram,
                       histogram = } {
            \exp_not:n { polygon, style = } {
                        \exp_not:V \l_@@_graph_options_histogram_tl
                } }
        \exp_not:n { ] data [set = histogram, format = TeX~code] } {
            \exp_not:V \l_@@_graph_tikzdata_tl
        }
        \exp_not:n { info' } {
            \exp_not:V \l_@@_graph_userpreinfo_tl
        }
        \exp_not:n { info } {
            \exp_not:V \l_@@_graph_tikzinfo_tl
            \exp_not:V \l_@@_graph_userpostinfo_tl
        }
        \exp_not:n { ; \end{tikzpicture} }
    }
    \tl_use:N \l_@@_graph_tikzpicture_tl
}
\cs_new_protected_nopar:Nn \@@_graph_make_hist:n {
    \@@_graph_make_hist:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_graph_make_hist:nn {
    \int_incr:N \l_@@_currange_int
%    \end{macrocode}
%
% Extract interval data
%
%    \begin{macrocode}
    \@@_parse_range:w #1 \q_stop
%    \end{macrocode}
%
% Compute rectangle height
%
%    \begin{macrocode}
    \fp_set:Nn \l_@@_graph_curheight_fp {
        (#2) / ( \l_@@_range_max_fp -
                    \l_@@_range_min_fp)
    }
%    \end{macrocode}
%
% Add margins to axes
%
%    \begin{macrocode}
    \@@_graph_update_minmaxval:NN \l_@@_range_min_fp \l_@@_range_max_fp
    \@@_graph_update_maxheight:
%    \end{macrocode}
%
% Check if we want to show this element
%
%    \begin{macrocode}
    \@@_set_if_shown:N \l_tmpa_bool
%    \end{macrocode}
%
% Append the rectangle to the TikZ datavisualization content
%
%    \begin{macrocode}
    \@@_graph_addpoint:nnn { SW }
        { \l_@@_range_min_fp }
        { 0 }
    \bool_if:NF \l_tmpa_bool {
%    \end{macrocode}
%
% Add an outlier point to inhibit the rectangle drawing
%
%    \begin{macrocode}
        \@@_graph_outlier:
    }
    \@@_graph_addpoint:nnn { NW }
        { \l_@@_range_min_fp }
        { \l_@@_graph_curheight_fp }
    \bool_if:NF \l_tmpa_bool { \@@_graph_outlier: }
    \@@_graph_addpoint:nnn { NE }
        { \l_@@_range_max_fp }
        { \l_@@_graph_curheight_fp }
    \bool_if:NF \l_tmpa_bool { \@@_graph_outlier: }
    \@@_graph_addpoint:nnn { SE }
        { \l_@@_range_max_fp }
        { 0 }
    \bool_if:NT \l_tmpa_bool {
%    \end{macrocode}
%
% Maybe append a freq or count label on middle top of the rect
%
%    \begin{macrocode}
        \bool_if:NT \l_@@_graph_areas_bool {
            \@@_graph_addlabel:nn
                \@@_graph_y_format:n
                { \fp_eval:n {#2 / \l_@@_graph_scale_fp} }
        }
    }
    \@@_graph_outlier:
}
\cs_new_protected_nopar:Nn \@@_graph_addlabel:nn {
    \tl_put_right:Nx \l_@@_graph_tikzinfo_tl {
        \exp_not:n { \path (NW }
        \int_use:N \l_@@_currange_int
        \exp_not:n { ) -- node[ }
            \exp_not:V \l_@@_graph_options_areas_tl
        \exp_not:N ] {
            \exp_not:n { $ #1 } { #2 } \exp_not:N $
        } \exp_not:n { (NE }
        \int_use:N \l_@@_currange_int
        \exp_not:n { ); }
    }
}
%    \end{macrocode}
%
% second pass, comb
%
%    \begin{macrocode}
\cs_new_protected:Nn \@@_graph_dopicture_comb: {
    \@@_graph_setup:n {comb}
%    \end{macrocode}
%
% Loop through the list again to fill tikz data and labels
%
%    \begin{macrocode}
    \keyval_parse:NNV
            \@@_graph_make_comb:n
            \@@_graph_make_comb:nn
            \l_@@_data_tl
%    \end{macrocode}
%
% Create the picture itself
%
%    \begin{macrocode}
    \@@_graph_handle_hmargin:
    \@@_graph_handle_vmargin:
    \tl_set:Nx \l_@@_graph_tikzpicture_tl {
        \exp_not:n { \begin{tikzpicture}[ }
            \exp_not:V \l_@@_graph_options_pic_tl
        \exp_not:n { ] \datavisualization
                [scientific~axes = } {
                        \exp_not:V
                            \l_@@_graph_options_system_tl
                    }
        \exp_not:n { , x~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludex_clist
                    }
                    \exp_not:n { , ticks = { tick~typesetter/.code = {
                        $\@@_graph_values_format:n { \fp_eval:n{####1} }$ }}, }
                    \exp_not:V
                        \l_@@_graph_options_comb_xaxis_tl
                    \exp_not:n { , }
                    \exp_not:V
                        \c_@@_graph_savexstep_tl
                }
        \exp_not:n { , y~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludey_clist
                    }
                    \exp_not:n { , }
                    \exp_not:n { , ticks = { tick~typesetter/.code = {
                        $\@@_graph_y_format:n { \fp_eval:n{####1} }$ }}, }
                    \exp_not:V
                        \l_@@_graph_options_yaxis_tl
                }
        \exp_not:n { , visualize~as~line = bar~graph,
                       bar~graph = } {
            \exp_not:n { style = } {
                        \exp_not:V \l_@@_graph_options_comb_tl
                } }
        \exp_not:n { ] data [set = bar~graph, format = TeX~code] } {
            \exp_not:V \l_@@_graph_tikzdata_tl
        }
        \exp_not:n { info' } {
            \exp_not:V \l_@@_graph_userpreinfo_tl
        }
        \exp_not:n { info } {
            \exp_not:V \l_@@_graph_tikzinfo_tl
            \exp_not:V \l_@@_graph_userpostinfo_tl
        }
        \exp_not:n { ; \end{tikzpicture} }
    }
    \tl_use:N \l_@@_graph_tikzpicture_tl
}
\cs_new_protected_nopar:Nn \@@_graph_make_comb:n {
    \@@_graph_make_comb:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_graph_make_comb:nn {
    \int_incr:N \l_@@_currange_int
%    \end{macrocode}
%
% Set value
%
%    \begin{macrocode}
    \fp_set:Nn \l_@@_graph_curvalue_fp {
        #1
    }
%    \end{macrocode}
%
% Compute height
%
%    \begin{macrocode}
    \fp_set:Nn \l_@@_graph_curheight_fp {
        (#2) / \l_@@_graph_scale_fp
    }
%    \end{macrocode}
%
% Add margins to axes
%
%    \begin{macrocode}
    \@@_graph_update_minmaxval:NN
        \l_@@_graph_curvalue_fp \l_@@_graph_curvalue_fp
    \@@_graph_update_maxheight:
%    \end{macrocode}
%
% Check if we want to show this element
%
%    \begin{macrocode}
    \@@_set_if_shown:N \l_tmpa_bool
%    \end{macrocode}
%
% Append the bar to the TikZ datavisualization content
%
%    \begin{macrocode}
    \@@_graph_addpoint:nnn { S }
        { \l_@@_graph_curvalue_fp }
        { 0 }
    \bool_if:NF \l_tmpa_bool {
%    \end{macrocode}
%
% add an outlier to inhibit the bar drawing
%
%    \begin{macrocode}
        \@@_graph_outlier:
    }
    \@@_graph_addpoint:nnn { N }
        { \l_@@_graph_curvalue_fp }
        { \l_@@_graph_curheight_fp }
    \@@_graph_outlier:
}
%    \end{macrocode}
%
% second pass, cumulative
%
%    \begin{macrocode}
\cs_new_protected_nopar:Nn \@@_graph_dopicture_cumulative: {
    \@@_graph_setup:n {cumulative}
%    \end{macrocode}
%
% Increasing or decreasing starting point
%
%    \begin{macrocode}
    \bool_if:NTF \l_@@_graph_decreasing_bool {
        \fp_set_eq:NN \l_@@_curtotal_fp
                    \l_@@_total_fp
    }{
        \fp_zero:N \l_@@_curtotal_fp
    }
    \fp_set:Nn \l_@@_graph_curheight_fp {
        \l_@@_curtotal_fp
            / \l_@@_graph_scale_fp
    }
    \@@_graph_update_maxheight:
%    \end{macrocode}
%
% Loop through the list again to fill tikz data and labels
%
%    \begin{macrocode}
    \keyval_parse:NNV
            \@@_graph_make_cumulative:n
            \@@_graph_make_cumulative:nn
            \l_@@_data_tl
%    \end{macrocode}
%
% After the last point we should be piecewise constant, which is the $N+1$-th
% item for |showonly| purposes. We call \cs{@@_graph_handle_hmargin:} even if we
% will add actual data in the margin, because that method computes the correct
% value for the margin from the options.
%
%    \begin{macrocode}
    \@@_graph_handle_hmargin:
    \int_incr:N \l_@@_currange_int
    \@@_set_if_shown:N \l_tmpa_bool
    \bool_if:NF \l_tmpa_bool { \@@_graph_outlier: }
    \@@_graph_addpoint:nnn { E }
        { \l_@@_graph_maxvalue_fp + \g_tmpa_fp }
        { \l_@@_graph_curheight_fp }
%    \end{macrocode}
%
% Before the first point we should be piecewise constant. We stash the TikZ data
% away to prepend the first point and maybe an outlier if the segment should be
% hidden, then append the stashed data. The initial segment is numbered~$0$.
%
%    \begin{macrocode}
    \tl_set_eq:NN \l_tmpa_tl \l_@@_graph_tikzdata_tl
    \tl_clear:N \l_@@_graph_tikzdata_tl
    \int_zero:N \l_@@_currange_int
    \@@_graph_addpoint:nnn { B }
        { \l_@@_graph_minvalue_fp - \g_tmpa_fp }
        { \l_@@_graph_maxheight_fp - \l_@@_graph_curheight_fp }
    \@@_set_if_shown:N \l_tmpa_bool
    \bool_if:NF \l_tmpa_bool { \@@_graph_outlier: }
    \tl_put_right:NV \l_@@_graph_tikzdata_tl \l_tmpa_tl
%    \end{macrocode}
%
% Create the picture itself
%
%    \begin{macrocode}
    \@@_graph_handle_vmargin:
    \tl_set:Nx \l_@@_graph_tikzpicture_tl {
        \exp_not:n { \begin{tikzpicture}[ }
            \exp_not:V \l_@@_graph_options_pic_tl
        \exp_not:n { ] \datavisualization
                [scientific~axes = } {
                        \exp_not:V
                            \l_@@_graph_options_system_tl
                    }
        \exp_not:n { , x~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludex_clist
                    }
                    \exp_not:n { , ticks = { tick~typesetter/.code = {
                        $\@@_graph_values_format:n { \fp_eval:n{####1} }$ }}, }
                    \exp_not:V
                        \l_@@_graph_options_cumulative_xaxis_tl
                    \exp_not:n { , }
                    \exp_not:V
                        \c_@@_graph_savexstep_tl
                }
        \exp_not:n { , y~axis = } {
                    \exp_not:n { include~value/.list = } {
                        \exp_not:V \l_@@_graph_tikzincludey_clist
                    }
                    \exp_not:n { , }
                    \exp_not:n { , ticks = { tick~typesetter/.code = {
                        $\@@_graph_y_format:n { \fp_eval:n{####1} }$ }}, }
                    \exp_not:V
                        \l_@@_graph_options_yaxis_tl
                }
        \exp_not:n { , visualize~as~line = cumulative,
                       cumulative = } {
            \exp_not:n { style = } {
                        \exp_not:V \l_@@_graph_options_cumulative_tl
                } }
        \exp_not:n { ] data [set = cumulative, format = TeX~code] } {
            \exp_not:V \l_@@_graph_tikzdata_tl
        }
        \exp_not:n { info' } {
            \exp_not:V \l_@@_graph_userpreinfo_tl
        }
        \exp_not:n { info } {
            \exp_not:V \l_@@_graph_tikzinfo_tl
            \exp_not:V \l_@@_graph_userpostinfo_tl
        }
        \exp_not:n { ; \end{tikzpicture} }
    }
    \tl_use:N \l_@@_graph_tikzpicture_tl
}
\cs_new_protected_nopar:Nn \@@_graph_make_cumulative:n {
    \@@_graph_make_hist:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_graph_make_cumulative:nn {
%    \end{macrocode}
%
% Extract interval data
%
%    \begin{macrocode}
    \@@_parse_range:w #1 \q_stop
%    \end{macrocode}
%
% Compute running total and new height
%
%    \begin{macrocode}
    \fp_set_eq:NN
        \l_@@_graph_prevheight_fp
        \l_@@_graph_curheight_fp
    \bool_if:NTF \l_@@_graph_decreasing_bool {
        \fp_sub:Nn \l_@@_curtotal_fp { #2 }
    }{
        \fp_add:Nn \l_@@_curtotal_fp { #2 }
    }
    \fp_set:Nn \l_@@_graph_curheight_fp {
        \l_@@_curtotal_fp
            / \l_@@_graph_scale_fp
    }
    \@@_graph_update_minmaxval:NN \l_@@_range_min_fp \l_@@_range_max_fp
    \@@_graph_update_maxheight:
%    \end{macrocode}
%
% Add points
%
%    \begin{macrocode}
    \int_incr:N \l_@@_currange_int
    \@@_graph_addpoint:nnn { L }
        { \l_@@_range_min_fp }
        { \l_@@_graph_prevheight_fp }
%    \end{macrocode}
%
% If we don't want to show this segment, add an outlier so that the
% line is not drawn.
%
%    \begin{macrocode}
    \@@_set_if_shown:N \l_tmpa_bool
    \bool_if:NF \l_tmpa_bool { \@@_graph_outlier: }
    \@@_graph_addpoint:nnn { R }
        { \l_@@_range_max_fp }
        { \l_@@_graph_curheight_fp }
%    \end{macrocode}
%
% TODO: Median and co
%
%    \begin{macrocode}
}
%    \end{macrocode}
%
% \subsection{Consolitate and sort values}
%
%    \begin{macrocode}
\clist_new:N \l_@@_compute_data_clist
\int_new:N \l_@@_compute_count_int

\fp_new:N \l_@@_compute_curvalue_fp
\seq_new:N \l_@@_data_seq

\NewDocumentCommand \StatsSortData { +O{} u{=} m +O{} } {
    \group_begin:
%    \end{macrocode}
%
% Handle optional settings (there are none currently)
% |\@@_setup:nn { rangedata } { #1, #5 }|
% Get the data inline or from a variable
%
%    \begin{macrocode}
    \tl_if_single:nTF { #3 } {
%    \end{macrocode}
%
% Generate meaningful error by using the non-existent variable.
%
%    \begin{macrocode}
        \cs_if_exist:NF #3 { #3 }
        \tl_set_eq:NN \l_@@_data_tl #3
    }{
        \tl_set:Nn \l_@@_data_tl { #3 }
    }
%    \end{macrocode}
%
% Sort the data according to values.
% We go through sequences because \cs{clist_sort:Nn} puts braces around the
% elements which prevents \cs{keyval_parse:NNn} to detect the equal sign.
%
%    \begin{macrocode}
    \seq_set_from_clist:NN \l_@@_data_seq \l_@@_data_tl
    \seq_sort:Nn \l_@@_data_seq {
        \seq_set_split:Nnn \l_tmpa_seq {=} { ##1 }
        \seq_set_split:Nnn \l_tmpb_seq {=} { ##2 }
        \fp_compare:nNnTF
            { \seq_item:Nn \l_tmpa_seq {1} } > { \seq_item:Nn \l_tmpb_seq {1} }
        {
            \sort_return_swapped:
        }{
            \sort_return_same:
        }
    }
%    \end{macrocode}
%
% Append a sentinel NaN to ensure the last value is not trimmed. This value is
% particularly suitable because NaN is equal to no fp (even itself).
%
%    \begin{macrocode}
    \seq_put_right:Nn \l_@@_data_seq { nan = 0 }
    \tl_set:Nx \l_@@_data_tl { \seq_use:Nn \l_@@_data_seq {,} }
%    \end{macrocode}
%
% Build the resulting clist while grouping equal values
%
%    \begin{macrocode}
    \clist_clear:N \l_@@_compute_data_clist
    \int_zero:N \l_@@_compute_count_int
    \fp_zero:N \l_@@_compute_curvalue_fp
    \keyval_parse:NNV
            \@@_accumulate:n
            \@@_accumulate:nn
            \l_@@_data_tl
    \exp_args:NNNV
    \group_end:
    \clist_set:Nn #2 \l_@@_compute_data_clist
}
\cs_new_protected_nopar:Nn \@@_accumulate:n {
    \@@_accumulate:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_accumulate:nn {
    \fp_compare:nNnTF { #1 } = { \l_@@_compute_curvalue_fp } {
        \int_add:Nn \l_@@_compute_count_int { #2 }
    }{
        \int_compare:nNnT { \l_@@_compute_count_int } > { 0 } {
            \clist_put_right:Nx \l_@@_compute_data_clist {
                \fp_to_decimal:N \l_@@_compute_curvalue_fp
                \exp_not:n { = }
                \exp_not:V \l_@@_compute_count_int
            }
        }
        \fp_set:Nn \l_@@_compute_curvalue_fp { #1 }
        \int_set:Nn \l_@@_compute_count_int { #2 }
    }
}
%    \end{macrocode}
%
% \subsection{Count values in ranges to generate grouped counts}
%
%    \begin{macrocode}
\NewDocumentCommand \StatsRangeData { +O{} u{=} m +r() +O{} } {
    \group_begin:
%    \end{macrocode}
%
% Handle optional settings (there are none currently)
% |\@@_setup:nn { rangedata } { #1, #5 }|
% Get the data inline or from a variable
%
%    \begin{macrocode}
    \tl_if_single:nTF { #3 } {
%    \end{macrocode}
%
% Generate meaningful error by using the non-existent variable.
%
%    \begin{macrocode}
        \cs_if_exist:NF #3 { #3 }
        \tl_set_eq:NN \l_@@_data_tl #3
    }{
        \tl_set:Nn \l_@@_data_tl { #3 }
    }
%    \end{macrocode}
%
% Loop through the ranges and count values into them
%
%    \begin{macrocode}
    \clist_clear:N \l_@@_compute_data_clist
    \clist_map_inline:nn { #4 } {
%    \end{macrocode}
%
% If not a range, bail out
%
%    \begin{macrocode}
        \exp_args:Nx \tl_if_eq:nnF { \tl_head:n {##1} }{ \IN } {
%    \end{macrocode}
%
% TODO: error message
%
%    \begin{macrocode}
            \clist_map_break:
        }
%    \end{macrocode}
%
% Extract interval data
%
%    \begin{macrocode}
        \@@_parse_range_full:w ##1 \q_stop
%    \end{macrocode}
%
% Loop through the point data and count matching values
%
%    \begin{macrocode}
        \int_zero:N \l_@@_compute_count_int
        \keyval_parse:NNV
                \@@_range_count:n
                \@@_range_count:nn
                \l_@@_data_tl
        \clist_put_right:Nx \l_@@_compute_data_clist {
            \exp_not:n { ##1 = }
            \exp_not:V \l_@@_compute_count_int
        }
    }
    \exp_args:NNNV
    \group_end:
    \clist_set:Nn #2 \l_@@_compute_data_clist
}
\cs_new_protected_nopar:Nn \@@_range_count:n {
    \@@_range_count:nn { #1 } { 1 }
}
\cs_new_protected_nopar:Nn \@@_range_count:nn {
    \@@_if_in_range:nT { #1 } {
        \int_add:Nn \l_@@_compute_count_int { #2 }
    }
}
%</package>
%    \end{macrocode}
%
% \end{implementation}