X Input Device Extension Library

X Consortium Standard

X Version 11, Release 6.4

Mark Patrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. Ardent, and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided “"as is”” without express or implied
warranty.

Copyright (c) 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the *““Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Input Extension Overview

This document describes an extension to the X11 server. The purpose of this extension is to sup-
port the use of additional input devices beyond the pointer and keyboard devices defined by the
core X protocol. This first section gives an overview of the input extension. The following sec-
tions correspond to chapters 9, 10, and 11, “Window and Session Manager Functions”,
“Events”, and “Event Handling Functions” of the “Xlib - C Language Interface’’ manual and
describe how to use the input device extension.

1.1. Design Approach

The design approach of the extension is to define functions and events analogous to the core func-
tions and events. This allows extension input devices and events to be individually distinguish-
able from each other and from the core input devices and events. These functions and events
make use of a device identifier and support the reporting of n-dimensional motion data as well as
other data that is not currently reportable via the core input events.

1.2. Core Input Devices

The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNo-
tify) are known as the core input events. All other input devices are referred to as extension input
devices, and the input events they generate are referred to as extension input events.

Note

This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. These requests may affect the synchronization of events from extension
devices. See the explanation in the section titled ‘“Event Synchronization and Core
Grabs.”

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation dependent. Functions are defined that allow client programs to change which physical
devices are used as the core devices.

1.3. Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices. Input events from these devices are of extension types
(DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMo-
tionNotify, and so on) and contain a device identifier so that events of the same type coming
from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Exten-
sion input events may be constructed by the server sending as many wire-sized events as

X Input Extension Library X11, Release 6.4

necessary to return the information required for that event. The library event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input
device. Extension input devices may have zero or more keys, zero or more buttons, and may
report zero or more axes of motion. Motion may be reported as relative movements from a previ-
ous position or as an absolute position. All valuators reporting motion information for a given
extension input device must report the same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input device classes. Server implementors may add new classes of input devices
without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis and, there-
fore, does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. Input Device Classes
Some of the input extension requests divide input devices into classes based on their functionality.

This is intended to allow new classes of input devices to be defined at a later time without chang-
ing the semantics of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUATOR The device reports valuator data in motion events.
PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as the XListInputDevices function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. Using Extension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections. A typical sequence of requests that a client would make is as follows:

. XListInputDevices — lists all of the available input devices. From the information
returned by this request, determine whether the desired input device is attached to the
server. For a description of the XListInputDevices request, see the section entitled ““List-
ing Available Devices.”

. XOpenDevice — requests that the server open the device for access by this client. This
request returns an XDevice structure that is used by most other input extension requests to
identify the specified device. For a description of the XOpenDevice request, see the sec-
tion entitled “Enabling and Disabling Extension Devices.”

. Determine the event types and event classes needed to select the desired input extension
events, and identify them when they are received. This is done via macros whose name

X Input Extension Library X11, Release 6.4

corresponds to the desired event, for example, DeviceKeyPress. For a description of these
macros, see the section entitled ““Selecting Extension Device Events.”

. XSelectExtensionEvent — selects the desired events from the server. For a description of
the XSelextExtensionEvent request, see the section entitled ‘““Selecting Extension Device
Events.”

. XNextEvent — receives the next available event. This is the core XNextEvent function

provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extension events, to get motion history
from an extension device, and to send input extension events to another client. These functions
are described in the following sections.

2. Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol requests.
The following requests are provided as extensions to Xlib. Constants and structures referenced by
these functions may be found in the files <X11/extensions/XI.h> and <X11/extensions/XIn-
put.h>, which are attached to this document as Appendix A.

The library will return NoSuchExtension if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

2.1. Window Manager Functions

This section discusses the following X Input Extension Window Manager topics:

. Changing the core devices
. Event synchronization and core grabs
. Extension active grabs

. Passively grabbing a key
. Passively grabbing a button

. Thawing a device

. Controlling device focus

. Controlling device feedback

. Ringing a bell on an input device
. Controlling device encoding

. Controlling button mapping

. Obtaining the state of a device

2.1.1. Changing the Core Devices

These functions are provided to change which physical device is used as the X pointer or X
keyboard.

X Input Extension Library X11, Release 6.4

Note

Using these functions may change the characteristics of the core devices. The new
pointer device may have a different number of buttons from the old one, or the new
keyboard device may have a different number of keys or report a different range of
keycodes. Client programs may be running that depend on those characteristics. For
example, a client program could allocate an array based on the number of buttons on
the pointer device and then use the button numbers received in button events as
indices into that array. Changing the core devices could cause such client programs
to behave improperly or to terminate abnormally if they ignore the ChangeDevi-
ceNotify event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNo-
tify event and a MappingNotify event. The specified device becomes the new X keyboard or X
pointer device. The location of the core device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either
device is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously
been opened via XOpenDevice, or is not supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevice request or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
the XCloseDevice request to close the new core device will fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the XChangeKeyboardDevice
function. The specified device must support input class Keys (as reported in the ListInputDe-
vices request) or the request will fail with a BadMatch error.

int XChangeKeyboardDevice (display, device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, XChangeKeyboardDevice returns Success. A ChangeDeviceNotify event
with the request field set to NewKeyboard is sent to all clients selecting that event. A Mapping-
Notify event with the request field set to MappingKeyboard is sent to all clients. The requested
device becomes the X keyboard, and the old keyboard becomes available as an extension input
device. The focus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboardDevice can generate AlreadyGrabbed, BadDevice, BadMatch, and
GrabFrozen errors.

To change which physical device is used as the X pointer, use the XChangePointerDevice func-
tion. The specified device must support input class Valuators (as reported in the XListInputDe-
vices request) and report at least two axes of motion, or the request will fail with a BadMatch

X Input Extension Library X11, Release 6.4

error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with a BadDevice error.

int XChangePointerDevice(display, device, xaxis, yaxis)
Display *display;
XDevice *device;

int xaxis;
int yaxis;
display Specifies the connection to the X server.
device Specifies the desired device.
xaxis Specifies the zero-based index of the axis to be used as the x-axis of the pointer
device.
yaxis Specifies the zero-based index of the axis to be used as the y-axis of the pointer
device.

If no error occurs, XChangePointerDevice returns Success. A ChangeDeviceNotify event
with the request field set to NewPointer is sent to all clients selecting that event. A Mapping-
Notify event with the request field set to MappingPointer is sent to all clients. The requested
device becomes the X pointer, and the old pointer becomes available as an extension input device.

XChangePointerDevice can generate AlreadyGrabbed, BadDevice, BadMatch, and
GrabFrozen errors.

2.1.2. Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode con-
trols the synchronization of all other input devices. For the XGrabKeyboard and XGrabKey
requests, pointer_mode controls the synchronization of all input devices, except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. Extension Active Grabs

Active grabs of extension devices are supported via the XGrabDevice function in the same way
that core devices are grabbed using the core XGrabKeyboard function, except that an extension
input device is passed as a function parameter. The XUngrabDevice function allows a previous
active grab for an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the XGrabDeviceBut-
ton and XGrabDeviceKey functions. These passive grabs are released via the XUngrabDe-
viceKey and XUngrabDeviceButton functions.

X Input Extension Library X11, Release 6.4

To grab an extension device, use the XGrabDevice function. The device must have previously
been opened using the XOpenDevice function.

int XGrabDevice (display, device, grab_window , owner_events, event_count, event_list,
this_device_mode, other_device_mode, time)
Display *display;
XDevice *device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

Time time;
display Specifies the connection to the X server.
device Specifies the desired device.

grab_window Specifies the ID of a window associated with the device specified above.
owner_events Specifies a boolean value of either True or False.
event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive. These event classes must have been obtained using the device
being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in milliseconds or
CurrentTime.

XGrabDevice actively grabs an extension input device and generates DeviceFocusIn and
DeviceFocusOut events. Further input events from this device are reported only to the grabbing
client. This function overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events is False, input events from this
device are reported with respect to grab_window and are reported only if specified in event_list.
If owner_events is True, then if a generated event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab_window and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and
the other_device_mode argument controls the further processing of input events from all other
devices.

. If the this_device_mode argument is GrabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of device events is
resumed. If the this_device_mode argumentis GrabModeSync, the state of the grabbed

X Input Extension Library X11, Release 6.4

device (as seen by client applications) appears to freeze, and no further device events are
generated by the server until the grabbing client issues a releasing XAllowDeviceEvents
call or until the device grab is released. Actual device input events are not lost while the
device is frozen; they are simply queued for later processing.

. If the other_device_mode is GrabModeAsync, event processing from other input devices
is unaffected by activation of the grab. If other_device_mode is GrabModeSync, the state
of all devices except the grabbed device (as seen by client applications) appears to freeze,
and no further events are generated by the server until the grabbing client issues a releasing
XAllowEvents or XAllowDeviceEvents call or until the device grab is released. Actual
events are not lost while the other devices are frozen; they are simply queued for later pro-
cessing.

XGrabDevice fails on the following conditions:
. If the device is actively grabbed by some other client, it returns AlreadyGrabbed.
. If grab_window is not viewable, it returns GrabNotViewable.

. If the specified time is earlier than the last-grab-time for the specified device or later than
the current X server time, it returns GrabInvalidTime. Otherwise, the last-grab-time for
the specified device is set to the specified time and CurrentTime is replaced by the current
X server time.

. If the device is frozen by an active grab of another client, it returns GrabFrozen.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

XGrabDevice can generate BadClass, BadDevice, BadValue, and BadWindow errors.

To release a grab of an extension device, use the XUngrabDevice function.

int XUngrabDevice(display, device, time)
Display *display;
XDevice *device;

Time time;
display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp expressed in milliseconds, or

CurrentTime.

XUngrabDevice allows a client to release an extension input device and any queued events if
this client has it grabbed from either XGrabDevice or XGrabDeviceKey. If any other devices
are frozen by the grab, XUngrabDevice thaws them. This function does not release the device
and any queued events if the specified time is earlier than the last-device-grab time or is later than
the current X server time. It also generates DeviceFocusIn and DeviceFocusOut events. The X
server automatically performs an XUngrabDevice if the event window for an active device grab
becomes not viewable or if the client terminates without releasing the grab.

XUngrabDevice can generate BadDevice errors.

X Input Extension Library X11, Release 6.4

2.1.4. Passively Grabbing a Key

To passively grab a single key on an extension device, use XGrabDeviceKey. That device must
have previously been opened using the XOpenDevice function, or the request will fail with a
BadDevice error. If the specified device does not support input class Keys, the request will fail
with a BadMatch error.

int XGrabDeviceKey(display, device, keycode, modifiers, modifier_device, grab_window,
owner_events, event_count, event_list, this_device_mode , other_device_mode)
Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.
device Specifies the desired device.
keycode Specifies the keycode of the key that is to be grabbed. You can pass either the

keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

You can also pass AnyModifier, which is equivalent to issuing the grab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.
owner_events Specifies a boolean value of either True or False.
event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync.

XGrabDeviceKey is analogous to the core XGrabKey function. It creates an explicit passive
grab for a key on an extension device. The XGrabDeviceKey function establishes a passive grab

X Input Extension Library X11, Release 6.4

on a device. Consequently, in the future,

. IF the device is not grabbed and the specified key, which itself can be a modifier key, is log-
ically pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

. AND no other modifier keys logically are down,

. AND EITHER the grab window is an ancestor of (or is) the focus window or the grab win-
dow is a descendent of the focus window and contains the pointer,

. AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

. THEN the device is actively grabbed, as for XGrabDevice, the last-device-grab time is set
to the time at which the key was pressed (as transmitted in the DeviceKeyPress event), and
the DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is termi-
nated automatically when the logical state of the device has the specified key released (indepen-
dent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min_keycode and
max_keycode in the information returned by the XListInputDevices function. If it is not within
that range, XGrabDeviceKey generates a Bad Value error.

XGrabDeviceKey generates a BadAccess error if some other client has issued a XGrabDe-
viceKey with the same device and key combination on the same window. When using AnyMod-
ifier or AnyKey, the request fails completely and the X server generates a BadAccess error, and
no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceKey returns Success upon successful completion of the request.

XGrabDeviceKey can generate BadAccess, BadClass, BadDevice, BadMatch, BadValue,
and BadWindow errors.

To release a passive grab of a single key on an extension device, use XUngrabDeviceKey.

X Input Extension Library X11, Release 6.4

int XUngrabDeviceKey(display, device, keycode , modifiers, modifier_device, ungrab_window)
Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.
device Specifies the desired device.
keycode Specifies the keycode of the key that is to be ungrabbed. You can pass either the

keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

You can also pass AnyModifier, which is equivalent to issuing the ungrab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is speci-
fied, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified above.

XUngrabDeviceKey is analogous to the core XUngrabKey function. It releases an explicit pas-
sive grab for a key on an extension input device.

XUngrabDeviceKey can generate BadAlloc, BadDevice, BadMatch, BadValue, and Bad-
Window errors.

2.1.5. Passively Grabbing a Button

To establish a passive grab for a single button on an extension device, use XGrabDeviceButton.
The specified device must have previously been opened using the XOpenDevice function, or the
request will fail with a BadDevice error. If the specified device does not support input class But-
tons, the request will fail with a BadMatch error.

10

X Input Extension Library X11, Release 6.4

int XGrabDeviceButton(display, device, button, modifiers, modifier_device , grab_window,
owner_events, event_count, event_list, this_device_mode , other_device_mode)
Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device ;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.
device Specifies the desired device.
button Specifies the code of the button that is to be grabbed. You can pass either the

button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

You can also pass AnyModifier, which is equivalent to issuing the grab request
for all possible modifier combinations (including the combination of no modi-
fiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.
owner_events Specifies a boolean value of either True or False.
event_count Specifies the number of elements in the event_list array.

event_list Specifies a list of event classes that indicates which device events are to be
reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync.

XGrabDeviceButton is analogous to the core XGrabButton function. It creates an explicit
passive grab for a button on an extension input device. Because the server does not track exten-
sion devices, no cursor is specified with this request. For the same reason, there is no confine_to
parameter. The device must have previously been opened using the XOpenDevice function.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

11

X Input Extension Library X11, Release 6.4

. IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

. AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab
window is a descendent of the focus window and contains the pointer,

. AND a passive grab on the same device and button/key combination does not exist on any
ancestor of the grab window,

. THEN the device is actively grabbed, as for XGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPress event), and
the DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. Otherwise, it is not required that the specified button be assigned to a physi-
cal button.

XGrabDeviceButton generates a BadAccess error if some other client has issued a XGrabDe-
viceButton with the same device and button combination on the same window. When using
AnyModifier or AnyButton, the request fails completely and the X server generates a BadAc-
cess error and no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceButton can generate BadAccess, BadClass, BadDevice, BadMatch, BadValue,
and BadWindow errors.

To release a passive grab of a button on an extension device, use XUngrabDeviceButton.

12

X Input Extension Library X11, Release 6.4

int XUngrabDeviceButton(display, device, button, modifiers, modifier_device, ungrab_window)
Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.
device Specifies the desired device.
button Specifies the code of the button that is to be ungrabbed. You can pass either a

button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

You can also pass AnyModifier, which is equivalent to issuing the ung