X Window System Protocol
X Consortium Standard

X Version 11, Release 6.7 DRAFT

Robert W. Scheifler

X Consortium, Inc.

X Window System is a trademark of The Open Group.
Copyright © 1986, 1987, 1988, 1994, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ““Software™), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the Open Group shall not be used in advertising or otherwise to promote

the sale, use or other dealings in this Software without prior written authorization from the Open Group.

Acknowledgments

The primary contributers to the X11 protocol are:

Dave Carver (Digital HPW)

Branko Gerovac (Digital HPW)

Jim Gettys (MIT/Project Athena, Digital)
Phil Karlton (Digital WSL)

Scott McGregor (Digital SSG)

Ram Rao (Digital UEG)

David Rosenthal (Sun)

Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)

The invited reviewers who provided useful input are:

Andrew Cherenson (Berkeley)
Burns Fisher (Digital)

Dan Garfinkel (HP)

Leo Hourvitz (Next)

Brock Krizan (HP)

David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)

John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)

Craig Taylor (Sun)

Jeffery Vroom (Stellar)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting this document.

This document does not attempt to provide the rationale or pragmatics required to fully under-
stand the protocol or to place it in perspective within a complete system.

The protocol contains many management mechanisms that are not intended for normal applica-
tions. Not all mechanisms are needed to build a particular user interface. It is important to keep
in mind that the protocol is intended to provide mechanism, not policy.

Robert W. Scheifler
X Consortium, Inc.

1. Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of four
bytes. Every request consists of four bytes of a header (containing the major opcode, the length
field, and a data byte) followed by zero or more additional bytes of data. The length field defines
the total length of the request, including the header. The length field in a request must equal the
minimum length required to contain the request. If the specified length is smaller or larger than
the required length, an error is generated. Unused bytes in a request are not required to be zero.
Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to contain
multiple requests, so extension requests typically have an additional minor opcode encoded in the
second data byte in the request header. However, the placement and interpretation of this minor
opcode and of all other fields in extension requests are not defined by the core protocol. Every
request on a given connection is implicitly assigned a sequence number, starting with one, that is
used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply consists of
32 bytes followed by zero or more additional bytes of data, as specified in the length field.
Unused bytes within a reply are not guaranteed to be zero. Every reply also contains the least sig-
nificant 16 bits of the sequence number of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes 128
through 255 are reserved for extensions. Every error also includes the major and minor opcodes
of the failed request and the least significant 16 bits of the sequence number of the request. For
the following errors (see section 4), the failing resource ID is also returned: Colormap, Cursor,
Drawable, Font, GContext, IDChoice, Pixmap, and Window. For Atom errors, the failing
atom is returned. For Value errors, the failing value is returned. Other core errors return no addi-
tional data. Unused bytes within an error are not guaranteed to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero. Every
event contains an 8-bit type code. The most significant bit in this code is set if the event was gen-
erated from a SendEvent request. Event codes 64 through 127 are reserved for extensions,
although the core protocol does not define a mechanism for selecting interest in such events.
Every core event (with the exception of KeymapNotify) also contains the least significant 16 bits
of the sequence number of the last request issued by the client that was (or is currently being) pro-
cessed by the server.

2. Syntactic Conventions

The rest of this document uses the following syntactic conventions.

. The syntax {...} encloses a set of alternatives.

J The syntax [...] encloses a set of structure components.

. In general, TYPEs are in uppercase and AlternativeValues are capitalized.
. Requests in section 9 are described in the following format:

X Protocol X11, Release 6.7 DRAFT
RequestName
argl: typel
argN: typeN
%

resultl: typel

resultM: typeM

Errors: kindl, ..., kindK

Description.

If no — is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If —+ is used, then one or more replies can be gener-
ated for a single request.

. Events in section 11 are described in the following format:

EventName

valuel : typel

valueN: typeN

Description.

3. Common Types

Name Value

LISTofFOO A type name of the form LISTofFOO means a counted list of elements of
type FOO. The size of the length field may vary (it is not necessarily the
same size as a FOO), and in some cases, it may be implicit. It is fully
specified in Appendix B. Except where explicitly noted, zero-length lists
are legal.

BITMASK The types BITMASK and LISTof VALUE are somewhat special. Various

LISTof VALUE requests contain arguments of the form:

value-mask: BITMASK

value-list: LISTof VALUE

These are used to allow the client to specify a subset of a heterogeneous
collection of optional arguments. The value-mask specifies which argu-
ments are to be provided; each such argument is assigned a unique bit
position. The representation of the BITMASK will typically contain
more bits than there are defined arguments. The unused bits in the value-
mask must be zero (or the server generates a Value error). The value-list
contains one value for each bit set to 1 in the mask, from least significant
to most significant bit in the mask. Each value is represented with four
bytes, but the actual value occupies only the least significant bytes as
required. The values of the unused bytes do not matter.

X Protocol

X11, Release 6.7 DRAFT

Name Value
OR A type of the form “T1 or ... or Tn” means the union of the indicated
types. A single-element type is given as the element without enclosing
braces.

WINDOW 32-bit value (top three bits guaranteed to be zero)

PIXMAP 32-bit value (top three bits guaranteed to be zero)

CURSOR 32-bit value (top three bits guaranteed to be zero)

FONT 32-bit value (top three bits guaranteed to be zero)

GCONTEXT 32-bit value (top three bits guaranteed to be zero)

COLORMAP 32-bit value (top three bits guaranteed to be zero)

DRAWABLE WINDOW or PIXMAP

FONTABLE FONT or GCONTEXT

ATOM 32-bit value (top three bits guaranteed to be zero)

VISUALID 32-bit value (top three bits guaranteed to be zero)

VALUE 32-bit quantity (used only in LISTof VALUE)

BYTE 8-bit value

INT8 8-bit signed integer

INT16 16-bit signed integer

INT32 32-bit signed integer

CARDS 8-bit unsigned integer

CARDI16 16-bit unsigned integer

CARD32 32-bit unsigned integer

TIMESTAMP CARD32

BITGRAVITY { Forget, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast }

WINGRAVITY { Unmap, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast }

BOOL { True, False }

EVENT { KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,
ButtonRelease, EnterWindow, LeaveWindow, PointerMotion,
PointerMotionHint, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, ButtonSMotion, ButtonMotion,
Exposure, VisibilityChange, StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState }

POINTEREVENT { ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion, ButtonSMotion,
ButtonMotion, KeymapState }

DEVICEEVENT { KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, Button1Motion, Button2Motion, Button3Motion,
ButtondMotion, ButtonSMotion, ButtonMotion }

KEYSYM 32-bit value (top three bits guaranteed to be zero)

KEYCODE CARDS8

BUTTON CARDS8

KEYMASK { Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, Mod5 }

BUTMASK { Buttonl, Button2, Button3, Buttond4, Button5}

KEYBUTMASK KEYMASK or BUTMASK

X Protocol X11, Release 6.7 DRAFT

Name Value
STRINGS8 LISTofCARDS
STRING16 LISTofCHAR2B
CHAR2B [bytel, byte2: CARDS]
POINT [x,y: INT16]
RECTANGLE [x, y: INT16,

width, height: CARD16]
ARC [x, y: INT16,

width, height: CARD16,
anglel, angle2: INT16]

HOST [family: { Internet, InternetV6, DECnet, Chaos }
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRINGI16 is that they are composed of two
bytes used to index a two-dimensional matrix, hence, the use of CHAR2B rather than CARD16.
This corresponds to the JIS/ISO method of indexing 2-byte characters. It is expected that most
large fonts will be defined with 2-byte matrix indexing. For large fonts constructed with linear
indexing, a CHAR2B can be interpreted as a 16-bit number by treating bytel as the most signifi-
cant byte. This means that clients should always transmit such 16-bit character values most sig-
nificant byte first, as the server will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see Change-
Hosts request).

4. Errors

In general, when a request terminates with an error, the request has no side effects (that is, there is
no partial execution). The only requests for which this is not true are ChangeWindowAt-
tributes, ChangeGC, PolyText8, PolyText16, FreeColors, StoreColors, and ChangeKey-
boardControl.

The following error codes result from various requests as follows:

Error Description

Access An attempt is made to grab a key/button combination already
grabbed by another client.

An attempt is made to free a colormap entry not allocated by the
client or to free an entry in a colormap that was created with all
entries writable.

An attempt is made to store into a read-only or an unallocated col-
ormap entry.

An attempt is made to modify the access control list from other than
the local host (or otherwise authorized client).

An attempt is made to select an event type that only one client can
select at a time when another client has already selected it.

X Protocol

X11, Release 6.7 DRAFT

Error

Description

Alloc

Atom

Colormap

Cursor

Drawable

Font

GContext

IDChoice

Implementation

Length

Match

Name
Pixmap

Request

The server failed to allocate the requested resource. Note that the
explicit listing of Alloc errors in request only covers allocation
errors at a very coarse level and is not intended to cover all cases of a
server running out of allocation space in the middle of service. The
semantics when a server runs out of allocation space are left unspeci-
fied, but a server may generate an Alloc error on any request for this
reason, and clients should be prepared to receive such errors and han-
dle or discard them.

A value for an ATOM argument does not name a defined ATOM.

A value for a COLORMAP argument does not name a defined COL-
ORMAP.

A value for a CURSOR argument does not name a defined CUR-
SOR.

A value for a DRAWABLE argument does not name a defined WIN-
DOW or PIXMAP.

A value for a FONT argument does not name a defined FONT.

A value for a FONTABLE argument does not name a defined FONT
or a defined GCONTEXT.

A value for a GCONTEXT argument does not name a defined
GCONTEXT.

The value chosen for a resource identifier either is not included in the
range assigned to the client or is already in use.

The server does not implement some aspect of the request. A server
that generates this error for a core request is deficient. As such, this
error is not listed for any of the requests, but clients should be pre-
pared to receive such errors and handle or discard them.

The length of a request is shorter or longer than that required to mini-
mally contain the arguments.

The length of a request exceeds the maximum length accepted by the
server.

An InputOnly window is used as a DRAWABLE.

In a graphics request, the GCONTEXT argument does not have the
same root and depth as the destination DRAWABLE argument.

Some argument (or pair of arguments) has the correct type and range,
but it fails to match in some other way required by the request.

A font or color of the specified name does not exist.
A value for a PIXMAP argument does not name a defined PIXMAP.

The major or minor opcode does not specify a valid request.

X Protocol X11, Release 6.7 DRAFT

Error Description

Value Some numeric value falls outside the range of values accepted by the
request. Unless a specific range is specified for an argument, the full
range defined by the argument’s type is accepted. Any argument
defined as a set of alternatives typically can generate this error (due
to the encoding).

Window A value for a WINDOW argument does not name a defined WIN-
DOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap, and Win-
dow errors are also used when the argument type is extended by union with a set of
fixed alternatives, for example, <WINDOW or PointerRoot or None>.

5. Keyboards

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive range [8,255].
A keycode value carries no intrinsic information, although server implementors may attempt to
encode geometry information (for example, matrix) to be interpreted in a server-dependent fash-
ion. The mapping between keys and keycodes cannot be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined KEYSYMs
include the character sets Latin-1, Latin-2, Latin-3, Latin-4, Kana, Arabic, Cyrillic, Greek, Tech,
Special, Publish, APL, Hebrew, Thai, and Korean as well as a set of symbols common on
keyboards (Return, Help, Tab, and so on). KEYSYMs with the most significant bit (of the 29
bits) set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey the set of
symbols on the corresponding key. If the list (ignoring trailing NoSymbol entries) is a single
KEYSYM “K”, then the list is treated as if it were the list “K NoSymbol K NoSymbol™. If the
list (ignoring trailing NoSymbol entries) is a pair of KEYSYMs “K/ K2, then the list is treated
as if it were the list “K71 K2 K1 K2”. If the list (ignoring trailing NoSymbol entries) is a triple of
KEYSYMs “KI K2 K37, then the list is treated as if it were the list “K7 K2 K3 NoSymbol™.
When an explicit “void” element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KEYSYMs. Group 1 contains the
first and second KEYSYMs, Group 2 contains the third and fourth KEYSYMs. Within each
group, if the second element of the group is NoSymbol, then the group should be treated as if the
second element were the same as the first element, except when the first element is an alphabetic
KEYSYM “K” for which both lowercase and uppercase forms are defined. In that case, the
group should be treated as if the first element were the lowercase form of “K’’ and the second ele-
ment were the uppercase form of “K”’.

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only the Group
1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in the list is defined. The modi-
fier state determines which group to use. Switching between groups is controlled by the
KEYSYM named MODE SWITCH, by attaching that KEYSYM to some KEYCODE and attach-
ing that KEYCODE to any one of the modifiers Mod1 through ModS. This modifier is called
the “group modifier”. For any KEYCODE, Group 1 is used when the group modifier is off, and
Group 2 is used when the group modifier is on.

X Protocol X11, Release 6.7 DRAFT

The Lock modifier is interpreted as CapsLock when the KEYSYM named CAPS LOCK is
attached to some KEYCODE and that KEYCODE is attached to the Lock modifier. The Lock
modifier is interpreted as ShiftL.ock when the KEYSYM named SHIFT LOCK is attached to
some KEYCODE and that KEYCODE is attached to the Lock modifier. If the Lock modifier
could be interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.

The operation of “keypad’ keys is controlled by the KEYSYM named NUM LOCK, by attach-
ing that KEYSYM to some KEYCODE and attaching that KEYCODE to any one of the modi-
fiers Mod1 through ModS. This modifier is called the ‘““numlock modifier”’. The standard
KEYSYMs with the prefix KEYPAD in their name are called ‘“‘keypad” KEYSYMs; these are
KEYSYMS with numeric value in the hexadecimal range #xFF80 to #xFFBD inclusive. In addi-
tion, vendor-specific KEYSYMS in the hexadecimal range #x11000000 to #x1100FFFF are also
keypad KEYSYMs.

Within a group, the choice of KEYSYM is determined by applying the first rule that is satisfied
from the following list:

. The numlock modifier is on and the second KEYSYM is a keypad KEYSYM. In this case,
if the Shift modifier is on, or if the Lock modifier is on and is interpreted as ShiftLock,
then the first KEYSYM is used; otherwise, the second KEYSYM is used.

J The Shift and Lock modifiers are both off. In this case, the first KEYSYM is used.

. The Shift modifier is off, and the Lock modifier is on and is interpreted as CapsLock. In
this case, the first KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then the
corresponding uppercase KEYSYM is used instead.

. The Shift modifier is on, and the Lock modifier is on and is interpreted as CapsLock. In
this case, the second KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then
the corresponding uppercase KEYSYM is used instead.

J The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftL.ock, or
both. In this case, the second KEYSYM is used.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it is merely
stored for reading and writing by clients.

6. Pointers

Buttons are always numbered starting with one.

7. Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environments, but they
will eliminate many InternAtom requests in most applications. Note that they are predefined
only in the sense of having numeric values, not in the sense of having required semantics. The
core protocol imposes no semantics on these names, but semantics are specified in other X.Org
standards, such as the Inter-Client Communication Conventions Manual and the X Logical Font
Description Conventions.

The following names have predefined atom values. Note that uppercase and lowercase matter.

ARC ITALIC_ANGLE STRING

ATOM MAX_SPACE SUBSCRIPT_X

BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION

X Protocol

COPYRIGHT
CURSOR
CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFERS
CUT_BUFFER6
CUT_BUFFER7

POINT

POINT_SIZE

PRIMARY
QUAD_WIDTH
RECTANGLE
RESOLUTION
RESOURCE_MANAGER
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_COLOR_MAP

X11, Release 6.7 DRAFT

UNDERLINE_THICKNESS
VISUALID

WEIGHT

WINDOW

WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE

DRAWABLE RGB_DEFAULT_MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMAL_HINTS
FAMILY_NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT X_HEIGHT

INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be imposed (either at the
protocol level or in terms of higher level user interface models), names beginning with an under-
score should be used for atoms that are private to a particular vendor or organization. To guaran-
tee no conflicts between vendors and organizations, additional prefixes need to be used. However,
the protocol does not define the mechanism for choosing such prefixes. For names private to a
single application or end user but stored in globally accessible locations, it is suggested that two
leading underscores be used to avoid conflicts with other names.

8. Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed. The value
of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B) means values are trans-
mitted most significant byte first, and value 154 (ASCII lowercase 1) means values are transmitted
least significant byte first. Except where explicitly noted in the protocol, all 16-bit and 32-bit
quantities sent by the client must be transmitted with this byte order, and all 16-bit and 32-bit
quantities returned by the server will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRINGS8

The version numbers indicate what version of the protocol the client expects the server to imple-
ment.

The authorization name indicates what authorization (and authentication) protocol the client
expects the server to use, and the data is specific to that protocol. Specification of valid authoriza-
tion mechanisms is not part of the core X protocol. A server that does not implement the protocol
the client expects or that only implements the host-based mechanism may simply ignore this
information. If both name and data strings are empty, this is to be interpreted as ‘“‘no explicit
authorization.”

X Protocol X11, Release 6.7 DRAFT

Server Response
The client receives the following information at connection setup:
success: { Failed, Success, Authenticate }

The client receives the following additional data if the returned success value is Failed, and the
connection is not successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16
reason: STRING8

The client receives the following additional data if the returned success value is Authenticate,
and further authentication negotiation is required:

reason: STRINGS8

The contents of the reason string are specific to the authorization protocol in use. The semantics
of this authentication negotiation are not constrained, except that the negotiation must eventually
terminate with a reply from the server containing a success value of Failed or Success.

The client receives the following additional data if the returned success value is Success, and the
connection is successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16

vendor: STRING8

release-number: CARD32

resource-id-base, resource-id-mask: CARD32
image-byte-order: { LSBFirst, MSBFirst }
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: { LeastSignificant, MostSignificant }
pixmap-formats: LISTofFORMAT

roots: LISTofSCREEN

motion-buffer-size: CARD32
maximum-request-length: CARD16
min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARDS,
bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

X Protocol X11, Release 6.7 DRAFT

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARDS
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: { Never, WhenMapped, Always }
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARDS
visuals: LISTof VISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: { StaticGray, StaticColor, TrueColor, GrayScale,
PseudoColor, DirectColor }
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

Server Information
The information that is global to the server is:

The protocol version numbers are an escape hatch in case future revisions of the protocol are nec-
essary. In general, the major version would increment for incompatible changes, and the minor
version would increment for small upward compatible changes. Barring changes, the major ver-
sion will be 11, and the minor version will be 0. The protocol version numbers returned indicate
the protocol the server actually supports. This might not equal the version sent by the client. The
server can (but need not) refuse connections from clients that offer a different version than the
server supports. A server can (but need not) support more than one version simultaneously.

The vendor string gives some identification of the owner of the server implementation. The ven-
dor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client allocates
resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT, and COLORMAP
by choosing a value with only some subset of these bits set and ORing it with resource-id-base.
Only values constructed in this way can be used to name newly created resources over this con-
nection. Resource IDs never have the top three bits set. The client is not restricted to linear or
contiguous allocation of resource IDs. Once an ID has been freed, it can be reused. An ID must
be unique with respect to the IDs of all other resources, not just other resources of the same type.
However, note that the value spaces of resource identifiers, atoms, visualids, and keysyms are dis-
tinguished by context, and as such, are not required to be disjoint; for example, a given numeric
value might be both a valid window ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the client, images
are always transmitted and received in formats (including byte order) specified by the server. The
byte order for images is given by image-byte-order and applies to each scanline unit in XY format
(bitmap format) and to each pixel value in Z format.

10

X Protocol X11, Release 6.7 DRAFT

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits as given
by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is quantized in multi-
ples of bits as given by bitmap-scanline-unit. The bitmap-scanline-unit is always less than or
equal to the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is either the
least significant or most significant bit in the unit, as given by bitmap-bit-order. If a pixmap is
represented in XY format, each plane is represented as a bitmap, and the planes appear from most
significant to least significant in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z format used
to represent images of that depth. An entry for a depth is included if any screen supports that
depth, and all screens supporting that depth must support only that Z format for that depth. In Z
format, the pixels are in scanline order, left to right within a scanline. The number of bits used to
hold each pixel is given by bits-per-pixel. Bits-per-pixel may be larger than strictly required by
the depth, in which case the least significant bits are used to hold the pixmap data, and the values
of the unused high-order bits are undefined. When the bits-per-pixel is 4, the order of nibbles in
the byte is the same as the image byte-order. When the bits-per-pixel is 1, the format is identical
for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-pad. When
bits-per-pixel is 1, this will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is transparent to
the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granularity than is
reported by MotionNotify events. The GetMotionEvents request makes such history available.
The motion-buffer-size gives the approximate maximum number of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the server, in
4-byte units. That is, length is the maximum value that can appear in the length field of a request.
Requests larger than this maximum generate a Length error, and the server will read and simply
discard the entire request. Maximum-request-length will always be at least 4096 (that is, requests
of length up to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values transmitted by the
server. Min-keycode is never less than 8, and max-keycode is never greater than 255. Not all
keycodes in this range are required to have corresponding keys.

Screen Information
The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps are sup-
ported for each depth listed, and windows of that depth are supported if at least one visual type is
listed for the depth. A pixmap depth of one is always supported and listed, but windows of depth
one might not be supported. A depth of zero is never listed, but zero-depth InputOnly windows
are always supported.

Root-depth and root-visual specify the depth and visual type of the root window. Width-in-pixels
and height-in-pixels specify the size of the root window (which cannot be changed). The class of
the root window is always InputQutput. Width-in-millimeters and height-in-millimeters can be
used to determine the physical size and the aspect ratio.

The default-colormap is the one initially associated with the root window. Clients with minimal
color requirements creating windows of the same depth as the root may want to allocate from this
map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application. These pixel
values are for permanently allocated entries in the default-colormap. The actual RGB values may

11

X Protocol X11, Release 6.7 DRAFT

be settable on some screens and, in any case, may not actually be black and white. The names are
intended to convey the expected relative intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The initial back-
ground of the root window is a pixmap filled with some unspecified two-color pattern using
black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed simulta-
neously (with InstallColormap), regardless of the number of entries allocated in each map.
Max-installed-maps specifies the maximum number of maps that might possibly be installed
simultaneously, depending on their allocations. Multiple static-visual colormaps with identical
contents but differing in resource ID should be considered as a single map for the purposes of this
number. For the typical case of a single hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen, although it may
be storage limited in the number of windows it can support at once. If save-unders is True, the
server can support the save-under mode in CreateWindow and ChangeWindowA ttributes,
although again it may be storage limited.

The current-input-events is what GetWindowAfttributes would return for the all-event-masks for
the root window.

Visual Information
The information that applies per visual-type is:
A given visual type might be listed for more than one depth or for more than one screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB values; the
RGB values can be changed dynamically. GrayScale is treated in the same way as Pseudo-
Color except which primary drives the screen is undefined; thus, the client should always store
the same value for red, green, and blue in colormaps. For DirectColor, a pixel value is decom-
posed into separate RGB subfields, and each subfield separately indexes the colormap for the cor-
responding value. The RGB values can be changed dynamically. TrueColor is treated in the
same way as DirectColor except the colormap has predefined read-only RGB values. These val-
ues are server-dependent but provide linear or near-linear increasing ramps in each primary.
StaticColor is treated in the same way as PseudoColor except the colormap has predefined
read-only RGB values, which are server-dependent. StaticGray is treated in the same way as
StaticColor except the red, green, and blue values are equal for any single pixel value, resulting
in shades of gray. StaticGray with a two-entry colormap can be thought of as monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and TrueColor.
Each has one contiguous set of bits set to 1 with no intersections. Usually each mask has the
same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity values
(individually) of red, green, and blue. This number need not bear any relation to the number of
colormap entries. Actual RGB values are always passed in the protocol within a 16-bit spectrum,
with 0 being minimum intensity and 65535 being the maximum intensity. On hardware that pro-
vides a linear zero-based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of available col-
ormap entries in a newly created colormap. For DirectColor and TrueColor, this will usually
be 2 to the power of the maximum number of bits set to 1 in red-mask, green-mask, and blue-
mask.

12

X Protocol X11, Release 6.7 DRAFT

9. Requests

CreateWindow

wid, parent: WINDOW

class: { InputOutput, InputOnly, CopyFromParent }
depth: CARDS

visual: VISUALID or CopyFromParent

x,y: INT16

width, height, border-width: CARD16

value-mask: BITMASK

value-list: LISTof VALUE

Errors: Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero for class
InputOutput or CopyFromParent means the depth is taken from the parent. A visual of
CopyFromParent means the visual type is taken from the parent. For class InputOutput, the
visual type and depth must be a combination supported for the screen (or a Match error results).
The depth need not be the same as the parent, but the parent must not be of class InputOnly (or a
Match error results). For class InputOnly, the depth must be zero (or a Match error results),
and the visual must be one supported for the screen (or a Match error results). However, the par-
ent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window cannot be
used as a drawable (as a source or destination for graphics requests). InputOnly and InputOut-
put windows act identically in other respects—properties, grabs, input control, and so on.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside, upper-left corner.

The x and y coordinates for the window are relative to the parent’s origin and specify the position
of the upper-left outer corner of the window (not the origin). The width and height specify the
inside size (not including the border) and must be nonzero (or a Value error results). The border-
width for an InputOnly window must be zero (or a Match error results).

The window is placed on top in the stacking order with respect to siblings.

The value-mask and value-list specify attributes of the window that are to be explicitly initialized.
The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32

border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32

bit-gravity BITGRAVITY

13

X Pro

tocol X11, Release 6.7 DRAFT

Attribute Type

win-gravity WINGRAVITY

backing-store { NotUseful, WhenMapped, Always }
backing-planes CARD32

backing-pixel CARD32

save-under BOOL

event-mask SETofEVENT
do-not-propagate-mask ~ SETofDEVICEEVENT
override-redirect BOOL

colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel Zero

save-under False

event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False

colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:

Itisa

win-gravity
event-mask
do-not-propagate-mask
override-redirect
cursor

Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The background
pixmap and the window must have the same root and the same depth (or a Match error results).
Any size pixmap can be used, although some sizes may be faster than others. If background

None

is specified, the window has no defined background. If background ParentRelative is

specified, the parent’s background is used, but the window must have the same depth as the parent
(or a Match error results). If the parent has background None, then the window will also have
background None. A copy of the parent’s background is not made. The parent’s background is
reexamined each time the window background is required. If background-pixel is given, it over-
rides the default background-pixmap and any background-pixmap given explicitly, and a pixmap

14

X Protocol X11, Release 6.7 DRAFT

of undefined size filled with background-pixel is used for the background. Range checking is not
performed on the background-pixel value; it is simply truncated to the appropriate number of bits.
For a ParentRelative background, the background tile origin always aligns with the parent’s
background tile origin. Otherwise, the background tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background of None. If the background is None, the
previous screen contents from other windows of the same depth as the window are simply left in
place if the contents come from the parent of the window or an inferior of the parent; otherwise,
the initial contents of the exposed regions are undefined. Exposure events are then generated for
the regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If border-pixmap is given,
it overrides the default border-pixmap. The border pixmap and the window must have the same
root and the same depth (or a Match error results). Any size pixmap can be used, although some
sizes may be faster than others. If CopyFromParent is given, the parent’s border pixmap is
copied (subsequent changes to the parent’s border attribute do not affect the child), but the win-
dow must have the same depth as the parent (or a Match error results). The pixmap might be
copied by sharing the same pixmap object between the child and parent or by making a complete
copy of the pixmap contents. If border-pixel is given, it overrides the default border-pixmap and
any border-pixmap given explicitly, and a pixmap of undefined size filled with border-pixel is
used for the border. Range checking is not performed on the border-pixel value; it is simply trun-
cated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is never
affected.

The bit-gravity defines which region of the window should be retained if the window is resized,
and win-gravity defines how the window should be repositioned if the parent is resized (see Con-
figureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of obscured
regions when the window is mapped would be beneficial. A backing-store of Always advises the
server that maintaining contents even when the window is unmapped would be beneficial. In this
case, the server may generate an exposure event when the window is created. A value of NotUse-
ful advises the server that maintaining contents is unnecessary, although a server may still choose
to maintain contents while the window is mapped. Note that if the server maintains contents, then
the server should maintain complete contents not just the region within the parent boundaries,
even if the window is larger than its parent. While the server maintains contents, exposure events
will not normally be generated, but the server may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is mapped, saving the contents
of windows it obscures would be beneficial.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination (and source, when the window is the source)
of graphics requests, but regions obscured by inferior windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing-stores and during save-unders. The backing-pixel speci-
fies what value to use in planes not covered by backing-planes. The server is free to save only the
specified bit planes in the backing-store or save-under and regenerate the remaining planes with
the specified pixel value. Any bits beyond the specified depth of the window in these values are
simply ignored.

15

X Protocol X11, Release 6.7 DRAFT

The event-mask defines which events the client is interested in for this window (or for some event
types, inferiors of the window). The do-not-propagate-mask defines which events should not be
propagated to ancestor windows when no client has the event type selected in this window.

The override-redirect specifies whether map and configure requests on this window should over-
ride a SubstructureRedirect on the parent, typically to inform a window manager not to tamper
with the window.

The colormap specifies the colormap that best reflects the true colors of the window. Servers
capable of supporting multiple hardware colormaps may use this information, and window man-
agers may use it for InstallColormap requests. The colormap must have the same visual type
and root as the window (or a Match error results). If CopyFromParent is specified, the parent’s
colormap is copied (subsequent changes to the parent’s colormap attribute do not affect the child).
However, the window must have the same visual type as the parent (or a Match error results),
and the parent must not have a colormap of None (or a Match error results). For an explanation
of None, see FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None is speci-
fied, the parent’s cursor will be used when the pointer is in the window, and any change in the
parent’s cursor will cause an immediate change in the displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no further
explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect on the window
state. The server might or might not make a copy of the pixmap.

ChangeWindowA ttributes

window: WINDOW
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values and restric-
tions are the same as for CreateWindow .

Setting a new background, whether by background-pixmap or background-pixel, overrides any
previous background. Setting a new border, whether by border-pixel or border-pixmap, overrides
any previous border.

Changing the background does not cause the window contents to be changed. Setting the border
or changing the background such that the border tile origin changes causes the border to be
repainted. Changing the background of a root window to None or ParentRelative restores the
default background pixmap. Changing the border of a root window to CopyFromParent
restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or changing
the backing-planes, backing-pixel, or save-under of a mapped window may have no immediate
effect.

16

X Protocol X11, Release 6.7 DRAFT

Multiple clients can select input on the same window; their event-masks are disjoint. When an
event is generated, it will be reported to all interested clients. However, only one client at a time
can select for SubstructureRedirect, only one client at a time can select for ResizeRedirect,
and only one client at a time can select for ButtonPress. An attempt to violate these restrictions
results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the contents of the
existing map) generates a ColormapNotify event. Changing the colormap of a visible window
might have no immediate effect on the screen (see InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is generated,
a subset of the attributes may have been altered.

GetWindowAttributes
window: WINDOW
%

visual: VISUALID

class: { InputOutput, InputOnly }

bit-gravity: BITGRAVITY

win-gravity: WINGRAVITY

backing-store: { NotUseful, WhenMapped, Always }
backing-planes: CARD32

backing-pixel: CARD32

save-under: BOOL

colormap: COLORMAP or None
map-is-installed: BOOL

map-state: { Unmapped, Unviewable, Viewable }
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable if it is
mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR of all event masks
selected on the window by clients. Your-event-mask is the event mask selected by the querying
client.

DestroyWindow
window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automatically. The
window and all inferiors are then destroyed, and a DestroyNotify event is generated for each
window. The ordering of the DestroyNotify events is such that for any given window,

17

X Protocol X11, Release 6.7 DRAFT

DestroyNotify is generated on all inferiors of the window before being generated on the window
itself. The ordering among siblings and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

DestroySubwindows
window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the window, in bottom-to-top
stacking order.

ChangeSaveSet

window: WINDOW
mode: { Insert, Delete }

Errors:
Match, Value, Window

This request adds or removes the specified window from the client’s save-set. The window must
have been created by some other client (or a Match error results). For further information about
the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow

window , parent: WINDOW
x,y: INT16

Errors: Match, Window

If the window is mapped, an UnmapWindow request is performed automatically first. The win-
dow is then removed from its current position in the hierarchy and is inserted as a child of the
specified parent. The x and y coordinates are relative to the parent’s origin and specify the new
position of the upper-left outer corner of the window. The window is placed on top in the stack-
ing order with respect to siblings. A ReparentNotify event is then generated. The override-redi-
rect attribute of the window is passed on in this event; a value of True indicates that a window
manager should not tamper with this window. Finally, if the window was originally mapped, a
MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The server might not
generate exposure events for regions from the initial unmap that are immediately obscured by the
final map.

A Match error is generated if:

. The new parent is not on the same screen as the old parent.

18

X Protocol X11, Release 6.7 DRAFT

. The new parent is the window itself or an inferior of the window.
. The new parent is InputOnly, and the window is not.
. The window has a ParentRelative background, and the new parent is not the same depth

as the window.

MapWindow
window: WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, then a MapRequest event is generated, but the window
remains unmapped. Otherwise, the window is mapped, and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled with its
background (if no background is defined, the existing screen contents are not altered), and zero or
more exposure events are generated. If a backing-store has been maintained while the window
was unmapped, no exposure events are generated. If a backing-store will now be maintained, a
full-window exposure is always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

MapSubwindows
window: WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children of the window, in top-to-
bottom stacking order.

UnmapWindow
window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window is
unmapped, and an UnmapNotify event is generated. Normal exposure processing on formerly
obscured windows is performed.

UnmapSubwindows
window: WINDOW

Errors: Window

19

X Protocol X11, Release 6.7 DRAFT

This request performs an UnmapWindow request on all mapped children of the window, in bot-
tom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Match, Value, Window

This request changes the configuration of the window. The value-mask and value-list specify
which values are to be given. The possible values are:

Attribute Type

X INT16

y INT16
width CARDI16
height CARDI16
border-width CARDI16
sibling WINDOW

stack-mode { Above, Below, Toplf, BottomlIf, Opposite }

The x and y coordinates are relative to the parent’s origin and specify the position of the upper-
left outer corner of the window. The width and height specify the inside size, not including the
border, and must be nonzero (or a Value error results). Those values not specified are taken from
the existing geometry of the window. Note that changing just the border-width leaves the outer-
left corner of the window in a fixed position but moves the absolute position of the window’s ori-
gin. Itis a Match error to attempt to make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, a ConfigureRequest event is generated, and no further pro-
cessing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or height of
the window is being changed, a ResizeRequest event is generated, and the current inside width
and height are used instead. Note that the override-redirect attribute of the window has no effect
on ResizeRedirect and that SubstructureRedirect on the parent has precedence over Resiz-
eRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among siblings,
and a ConfigureNotify event is generated if the state of the window actually changes. If the
inside width or height of the window has actually changed, then children of the window are
affected, according to their win-gravity. Exposure processing is performed on formerly obscured
windows (including the window itself and its inferiors if regions of them were obscured but now
are not). Exposure processing is also performed on any new regions of the window (as a result of
increasing the width or height) and on any regions where window contents are lost.

If the inside width or height of a window is not changed but the window is moved or its border is
changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost, depending on the

20

X Protocol X11, Release 6.7 DRAFT

bit-gravity of the window. It also causes children to be reconfigured, depending on their win-
gravity. For a change of width and height of W and H, we define the [Xx, y] pairs as:

Direction Deltas
NorthWest [0, 0]
North [W/2,0]
NorthEast [W, 0]
West [0,H/2]
Center [W/2,H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2,H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities
has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. This repositioning generates a GravityNotify event. GravityNotify
events are generated after the ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to the origin of
the root window. If the change in size of the window is coupled with a change in position of [X,
Y], then for bit-gravity the change in position of each pixel is [-X, —Y] and for win-gravity the
change in position of a child when its parent is so resized is [-X, —Y]. Note that Static gravity
still only takes effect when the width or height of the window is changed, not when the window is
simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a size
change, even if backing-store or save-under has been requested. The window is tiled with its
background (except, if no background is defined, the existing screen contents are not altered) and
Zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped when the parent is
resized, and an UnmapNotify event is generated. UnmapNotify events are generated after the
ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above

The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, then the window is placed at the top of
the stack.

BottomlIf If the window occludes the sibling, then the window is placed at the bottom
of the stack.

Opposite If the sibling occludes the window, then the window is placed at the top of

the stack. Otherwise, if the window occludes the sibling, then the window is
placed at the bottom of the stack.

21

X Protocol X11, Release 6.7 DRAFT

If a stack-mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, then the window is placed at the top of
the stack.

BottomIf If the window occludes any sibling, then the window is placed at the bottom

of the stack.

Opposite If any sibling occludes the window, then the window is placed at the top of
the stack. Otherwise, if the window occludes any sibling, then the window is
placed at the bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window is not actually a
sibling.

Note that the computations for BottomlIf, Toplf, and Opposite are performed with respect to the
window’s final geometry (as controlled by the other arguments to the request), not to its initial
geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: { RaiseLowest, LowerHighest }

Errors: Value, Window

If some other client has selected SubstructureRedirect on the window, then a Circu-
lateRequest event is generated, and no further processing is performed. Otherwise, the following
is performed, and then a CirculateNotify event is generated if the window is actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any) that is occluded by
another child to the top of the stack. For LowerHighest, CirculateWindow lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Exposure processing
is performed on formerly obscured windows.

GetGeometry
drawable: DRAWABLE
%

root: WINDOW

depth: CARDS

x,y: INT16

width, height, border-width: CARD16

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the number of
bits per pixel for the object. The x, y, and border-width will always be zero for pixmaps. For a

22

X Protocol X11, Release 6.7 DRAFT

window, the x and y coordinates specify the upper-left outer corner of the window relative to its
parent’s origin, and the width and height specify the inside size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree
window: WINDOW
%

root: WINDOW
parent: WINDOW or None
children: LISTof WINDOW

Errors: Window

This request returns the root, the parent, and the children of the window. The children are listed
in bottom-to-top stacking order.

InternAtom

name: STRINGS
only-if-exists: BOOL

%
atom: ATOM or None
Errors: Alloc, Value

This request returns the atom for the given name. If only-if-exists is False, then the atom is cre-
ated if it does not exist. The string should use the ISO Latin-1 encoding. Uppercase and lower-
case matter.

The lifetime of an atom is not tied to the interning client. Atoms remain defined until server reset
(see section 10).

GetAtomName
atom: ATOM
N
name: STRING8

Errors: Atom

This request returns the name for the given atom.

23

X Protocol X11, Release 6.7 DRAFT

ChangeProperty

window: WINDOW

property, type: ATOM

format: {8, 16, 32}

mode: { Replace, Prepend, Append }

data: LISTofINTS or LISTofINT16 or LISTofINT32

Errors: Alloc, Atom, Match, Value, Window

This request alters the property for the specified window. The type is uninterpreted by the server.
The format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quanti-
ties so that the server can correctly byte-swap as necessary.

If the mode is Replace, the previous property value is discarded. If the mode is Prepend or
Append, then the type and format must match the existing property value (or a Match error
results). If the property is undefined, it is treated as defined with the correct type and format with
zero-length data. For Prepend, the data is tacked on to the beginning of the existing data, and for
Append, it is tacked on to the end of the existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until server reset (see section 10).

The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty
window: WINDOW
property: ATOM

Errors: Atom, Window

This request deletes the property from the specified window if the property exists and generates a
PropertyNotify event on the window unless the property does not exist.

GetProperty

window: WINDOW

property: ATOM

type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

%

type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT?32

Errors: Atom, Value, Window

24

X Protocol X11, Release 6.7 DRAFT

If the specified property does not exist for the specified window, then the return type is None, the
format and bytes-after are zero, and the value is empty. The delete argument is ignored in this
case. If the specified property exists but its type does not match the specified type, then the return
type is the actual type of the property, the format is the actual format of the property (never zero),
the bytes-after is the length of the property in bytes (even if the format is 16 or 32), and the value
is empty. The delete argument is ignored in this case. If the specified property exists and either
AnyPropertyType is specified or the specified type matches the actual type of the property, then
the return type is the actual type of the property, the format is the actual format of the property
(never zero), and the bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I =4 * long-offset

T=N-1I
L = MINIMUMC(T, 4 * long-length)
A=N-(I+L)

The returned value starts at byte index I in the property (indexing from 0), and its length in bytes
is L. However, it is a Value error if long-offset is given such that L is negative. The value of
bytes-after is A, giving the number of trailing unread bytes in the stored property. If delete is
True and the bytes-after is zero, the property is also deleted from the window, and a Proper-
tyNotify event is generated on the window.

RotateProperties

window: WINDOW
delta: INT16
properties: LISTofATOM

Errors: Atom, Match, Window

If the property names in the list are viewed as being numbered starting from zero, and there are N
property names in the list, then the value associated with property name I becomes the value asso-
ciated with property name (I + delta) mod N, for all I from zero to N — 1. The effect is to rotate
the states by delta places around the virtual ring of property names (right for positive delta, left
for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property in the order
listed.

If an atom occurs more than once in the list or no property with that name is defined for the win-
dow, a Match error is generated. If an Atom or Match error is generated, no properties are
changed.

25

X Protocol X11, Release 6.7 DRAFT

ListProperties
window: WINDOW
N
atoms: LISTofATOM

Errors: Window

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the specified selection.
This request has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current server time. Otherwise, the last-change time is set
to the specified time with CurrentTime replaced by the current server time. If the owner win-
dow is specified as None, then the owner of the selection becomes None (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request. If the new owner
(whether a client or None) is not the same as the current owner and the current owner is not
None, then the current owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection is closed) or
if the owner window it has specified in the request is later destroyed, then the owner of the selec-
tion automatically reverts to None, but the last-change time is not affected.

The selection atom is uninterpreted by the server. The owner window is returned by the GetSe-
lectionOwner request and is reported in SelectionRequest and SelectionClear events.

Selections are global to the server.

GetSelectionOwner
selection: ATOM
N
owner: WINDOW or None

Errors: Atom

This request returns the current owner window of the specified selection, if any. If None is
returned, then there is no owner for the selection.

26

X Protocol X11, Release 6.7 DRAFT

ConvertSelection

selection, target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

Errors: Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event to that owner.
If no owner for the specified selection exists, the server generates a SelectionNotify event to the
requestor with property None. The arguments are passed on unchanged in either of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL

event-mask: SETofEVENT

event: <normal-event-format>

Errors: Value, Window

If PointerWindow is specified, destination is replaced with the window that the pointer is in. If
InputFocus is specified and the focus window contains the pointer, destination is replaced with
the window that the pointer is in. Otherwise, destination is replaced with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination any of the
event types in event-mask.

If propagate is True and no clients have selected on destination any of the event types in event-
mask, then destination is replaced with the closest ancestor of destination for which some client
has selected a type in event-mask and no intervening window has that type in its do-not-propa-
gate-mask. If no such window exists or if the window is an ancestor of the focus window and
InputFocus was originally specified as the destination, then the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the final destination any of the types
specified in event-mask.

The event code must be one of the core events or one of the events defined by an extension (or a
Value error results) so that the server can correctly byte-swap the contents as necessary. The
contents of the event are otherwise unaltered and unchecked by the server except to force on the
most significant bit of the event code and to set the sequence number in the event correctly.

Active grabs are ignored for this request.

27

-

X Protocol X11, Release 6.7 DRAFT

GrabPointer

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: { Synchronous, Asynchronous }
confine-to: WINDOW or None

cursor: CURSOR or None

time: TIMESTAMP or CurrentTime

%
status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable }

Errors: Cursor, Value, Window

This request actively grabs control of the pointer. Further pointer events are only reported to the
grabbing client. The request overrides any active pointer grab by this client.

If owner-events is False, all generated pointer events are reported with respect to grab-window
and are only reported if selected by event-mask. If owner-events is True and a generated pointer
event would normally be reported to this client, it is reported normally. Otherwise, the event is
reported with respect to the grab-window and is only reported if selected by event-mask. For
either value of owner-events, unreported events are simply discarded.

If pointer-mode is Asynchronous, pointer event processing continues normally. If the pointer is
currently frozen by this client, then processing of pointer events is resumed. If pointer-mode is
Synchronous, the state of the pointer (as seen by means of the protocol) appears to freeze, and
no further pointer events are generated by the server until the grabbing client issues a releasing
AllowEvents request or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen. They are simply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by activation of the
grab. If keyboard-mode is Synchronous, the state of the keyboard (as seen by means of the pro-
tocol) appears to freeze, and no further keyboard events are generated by the server until the grab-
bing client issues a releasing AllowEvents request or until the pointer grab is released. Actual
keyboard changes are not lost while the keyboard is frozen. They are simply queued for later pro-
cessing.

If a cursor is specified, then it is displayed regardless of what window the pointer is in. If no cur-
sor is specified, then when the pointer is in grab-window or one of its subwindows, the normal
cursor for that window is displayed. Otherwise, the cursor for grab-window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay contained in that
window. The confine-to window need have no relationship to the grab-window. If the pointer is
not initially in the confine-to window, then it is warped automatically to the closest edge (and
enter/leave events are generated normally) just before the grab activates. If the confine-to window
is subsequently reconfigured, the pointer will be warped automatically as necessary to keep it
contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed by some other
client. The request fails with status Frozen if the pointer is frozen by an active grab of another
client. The request fails with status NotViewable if grab-window or confine-to window is not
viewable or if the confine-to window lies completely outside the boundaries of the root window.
The request fails with status InvalidTime if the specified time is earlier than the last-pointer-grab
time or later than the current server time. Otherwise, the last-pointer-grab time is set to the

28

X Protocol X11, Release 6.7 DRAFT

specified time, with CurrentTime replaced by the current server time.

UngrabPointer
time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either GrabPointer or
GrabButton or from a normal button press) and releases any queued events. The request has no
effect if the specified time is earlier than the last-pointer-grab time or is later than the current
server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or confine-to window
for an active pointer grab becomes not viewable or if window reconfiguration causes the confine-
to window to lie completely outside the boundaries of the root window.

GrabButton

modifiers: SETofKEYMASK or AnyModifier

button: BUTTON or AnyButton

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: { Synchronous, Asynchronous }
confine-to: WINDOW or None

cursor: CURSOR or None

Errors: Access, Cursor, Value, Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as described
in GrabPointer, the last-pointer-grab time is set to the time at which the button was pressed (as
transmitted in the ButtonPress event), and the ButtonPress event is reported if all of the follow-
ing conditions are true:

. The pointer is not grabbed and the specified button is logically pressed when the specified
modifier keys are logically down, and no other buttons or modifier keys are logically down.

. The grab-window contains the pointer.

. The confine-to window (if any) is viewable.

. A passive grab on the same button/key combination does not exist on any ancestor of grab-
window.

The interpretation of the remaining arguments is the same as for GrabPointer. The active grab
is terminated automatically when the logical state of the pointer has all buttons released, indepen-
dent of the logical state of modifier keys. Note that the logical state of a device (as seen by means
of the protocol) may lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same button/key com-
binations on the same window. A modifier of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). It is not
required that all specified modifiers have currently assigned keycodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not required that the

29

X Protocol X11, Release 6.7 DRAFT

button specified currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabButton request with
the same button/key combination on the same window. When using AnyModifier or AnyBut-
ton, the request fails completely (no grabs are established), and an Access error is generated if
there is a conflicting grab for any combination. The request has no effect on an active grab.

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Value, Window

This request releases the passive button/key combination on the specified window if it was
grabbed by this client. A modifiers argument of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). A button of
AnyButton is equivalent to issuing the request for all possible buttons. The request has no effect
on an active grab.

ChangeA ctivePointer Grab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively grabbed by the
client and the specified time is no earlier than the last-pointer-grab time and no later than the cur-
rent server time. The interpretation of event-mask and cursor are the same as in GrabPointer .
This request has no effect on the parameters of any passive grabs established with GrabButton.

GrabKeyboard

grab-window: WINDOW
owner-events: BOOL

pointer-mode, keyboard-mode: { Synchronous, Asynchronous }
time: TIMESTAMP or CurrentTime

_)
status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable }
Errors: Value, Window

This request actively grabs control of the keyboard. Further key events are reported only to the
grabbing client. This request overrides any active keyboard grab by this client.

If owner-events is False, all generated key events are reported with respect to grab-window. If
owner-events is True and if a generated key event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab-window. Both

30

X Protocol X11, Release 6.7 DRAFT

KeyPress and KeyRelease events are always reported, independent of any event selection made
by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues normally. If the
keyboard is currently frozen by this client, then processing of keyboard events is resumed. If
keyboard-mode is Synchronous, the state of the keyboard (as seen by means of the protocol)
appears to freeze. No further keyboard events are generated by the server until the grabbing client
issues a releasing AllowEvents request or until the keyboard grab is released. Actual keyboard
changes are not lost while the keyboard is frozen. They are simply queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by activation of the
grab. If pointer-mode is Synchronous, the state of the pointer (as seen by means of the protocol)
appears to freeze. No further pointer events are generated by the server until the grabbing client
issues a releasing AllowEvents request or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen. They are simply queued for later processing.

This request generates FocusIn and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by some other
client. The request fails with status Frozen if the keyboard is frozen by an active grab of another
client. The request fails with status NotViewable if grab-window is not viewable. The request
fails with status InvalidTime if the specified time is earlier than the last-keyboard-grab time or
later than the current server time. Otherwise, the last-keyboard-grab time is set to the specified
time with CurrentTime replaced by the current server time.

UngrabKeyboard
time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of either
GrabKeyboard or GrabKey) and releases any queued events. The request has no effect if the
specified time is earlier than the last-keyboard-grab time or is later than the current server time.

This request generates FocusIn and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active keyboard
grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: { Synchronous, Asynchronous }

Errors: Access, Value, Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is actively
grabbed as described in GrabKeyboard, the last-keyboard-grab time is set to the time at which
the key was pressed (as transmitted in the KeyPress event), and the KeyPress event is reported if
all of the following conditions are true:

31

X Protocol X11, Release 6.7 DRAFT

. The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other modi-
fier keys are logically down.

. Either the grab-window is an ancestor of (or is) the focus window, or the grab-window is a
descendent of the focus window and contains the pointer.

. A passive grab on the same key combination does not exist on any ancestor of grab-win-
dow.

The interpretation of the remaining arguments is the same as for GrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified key
released, independent of the logical state of modifier keys. Note that the logical state of a device
(as seen by means of the protocol) may lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same key combinations
on the same window. A modifier of AnyModifier is equivalent to issuing the request for all pos-
sible modifier combinations (including the combination of no modifiers). It is not required that
all modifiers specified have currently assigned keycodes. A key of AnyKey is equivalent to issu-
ing the request for all possible keycodes. Otherwise, the key must be in the range specified by
min-keycode and max-keycode in the connection setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey with the same key com-
bination on the same window. When using AnyModifier or AnyKey, the request fails com-
pletely (no grabs are established), and an Access error is generated if there is a conflicting grab
for any combination.

UngrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors: Value, Window

This request releases the key combination on the specified window if it was grabbed by this
client. A modifiers argument of AnyModifier is equivalent to issuing the request for all possible
modifier combinations (including the combination of no modifiers). A key of AnyKey is equiv-
alent to issuing the request for all possible keycodes. This request has no effect on an active grab.

AllowEvents

mode: { AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, SyncBoth }
time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to freeze. The request
has no effect if the specified time is earlier than the last-grab time of the most recent active grab
for the client or if the specified time is later than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing continues nor-
mally. If the pointer is frozen twice by the client on behalf of two separate grabs, AsyncPointer

32

X Protocol X11, Release 6.7 DRAFT

thaws for both. AsyncPointer has no effect if the pointer is not frozen by the client, but the
pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client, pointer event pro-
cessing continues normally until the next ButtonPress or ButtonRelease event is reported to the
client, at which time the pointer again appears to freeze. However, if the reported event causes
the pointer grab to be released, then the pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen as the result of
an event having been sent to the client (either from the activation of a GrabButton or from a pre-
vious AllowEvents with mode SyncPointer but not from a GrabPointer), then the pointer grab
is released and that event is completely reprocessed, this time ignoring any passive grabs at or
above (towards the root) the grab-window of the grab just released. The request has no effect if
the pointer is not grabbed by the client or if the pointer is not frozen as the result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard event processing contin-
ues normally. If the keyboard is frozen twice by the client on behalf of two separate grabs,
AsyncKeyboard thaws for both. AsyncKeyboard has no effect if the keyboard is not frozen by
the client, but the keyboard need not be grabbed by the client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the client, keyboard event
processing continues normally until the next KeyPress or KeyRelease event is reported to the
client, at which time the keyboard again appears to freeze. However, if the reported event causes
the keyboard grab to be released, then the keyboard does not freeze. SyncKeyboard has no
effect if the keyboard is not frozen by the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client and is frozen as the result
of an event having been sent to the client (either from the activation of a GrabKey or from a pre-
vious AllowEvents with mode SyncKeyboard but not from a GrabKeyboard), then the
keyboard grab is released and that event is completely reprocessed, this time ignoring any passive
grabs at or above (towards the root) the grab-window of the grab just released. The request has
no effect if the keyboard is not grabbed by the client or if the keyboard is not frozen as the result
of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event processing (for both
devices) continues normally until the next ButtonPress, ButtonRelease, KeyPress, or KeyRe-
lease event is reported to the client for a grabbed device (button event for the pointer, key event
for the keyboard), at which time the devices again appear to freeze. However, if the reported
event causes the grab to be released, then the devices do not freeze (but if the other device is still
grabbed, then a subsequent event for it will still cause both devices to freeze). SyncBoth has no
effect unless both pointer and keyboard are frozen by the client. If the pointer or keyboard is
frozen twice by the client on behalf of two separate grabs, SyncBoth thaws for both (but a subse-
quent freeze for SyncBoth will only freeze each device once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client, event processing for
both devices continues normally. If a device is frozen twice by the client on behalf of two sepa-
rate grabs, AsyncBoth thaws for both. AsyncBoth has no effect unless both pointer and
keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing of keyboard
events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect on processing
of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously (by the same
or different clients). When a device is frozen on behalf of either grab, no event processing is per-
formed for the device. It is possible for a single device to be frozen because of both grabs. In this

33

[l

Il

X Protocol X11, Release 6.7 DRAFT

case, the freeze must be released on behalf of both grabs before events can again be processed. If
a device is frozen twice by a single client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other than the
one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer
window: WINDOW
%
root: WINDOW
child: WINDOW or None
same-screen: BOOL

root-X, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the root’s ori-
gin are returned. If same-screen is False, then the pointer is not on the same screen as the argu-
ment window, child is None, and win-x and win-y are zero. If same-screen is True, then win-x
and win-y are the pointer coordinates relative to the argument window’s origin, and child is the
child containing the pointer, if any. The current logical state of the modifier keys and the buttons
are also returned. Note that the logical state of a device (as seen by means of the protocol) may
lag the physical state if device event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

%
events: LISTof TIMECOORD

where:

TIMECOORD: [x,y: INT16
time: TIMESTAMP]

Errors: Window

34

X Protocol X11, Release 6.7 DRAFT

This request returns all events in the motion history buffer that fall between the specified start and
stop times (inclusive) and that have coordinates that lie within (including borders) the specified
window at its present placement. The x and y coordinates are reported relative to the origin of the
window.

If the start time is later than the stop time or if the start time is in the future, no events are
returned. If the stop time is in the future, it is equivalent to specifying CurrentTime.

TranslateCoordinates

src-window, dst-window: WINDOW
src-x, src-y: INT16

%

same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are returned as dst-x
and dst-y coordinates relative to dst-window’s origin. If same-screen is False, then src-window
and dst-window are on different screens, and dst-x and dst-y are zero. If the coordinates are con-
tained in a mapped child of dst-window, then that child is returned.

WarpPointer

src-window : WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16

src-width, src-height: CARD16
dst-x, dst-y: INT16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] relative to the cur-
rent position of the pointer. If dst-window is a window, this request moves the pointer to [dst-x,
dst-y] relative to dst-window’s origin. However, if src-window is not None, the move only takes
place if src-window contains the pointer and the pointer is contained in the specified rectangle of
src-window.

The src-x and src-y coordinates are relative to src-window’s origin. If src-height is zero, it is
replaced with the current height of src-window minus src-y. If src-width is zero, it is replaced
with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confine-to window of an active
pointer grab. An attempt will only move the pointer as far as the closest edge of the confine-to
window.

This request will generate events just as if the user had instantaneously moved the pointer.

35

X Protocol X11, Release 6.7 DRAFT

SetInputFocus

focus: WINDOW or PointerRoot or None
revert-to: { Parent, PointerRoot, None }
time: TIMESTAMP or CurrentTime

Errors: Match, Value, Window

This request changes the input focus and the last-focus-change time. The request has no effect if
the specified time is earlier than the current last-focus-change time or is later than the current
server time. Otherwise, the last-focus-change time is set to the specified time with CurrentTime
replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus window is
set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard’s focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the event is
reported normally. Otherwise, the event is reported with respect to the focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case, the revert-to
argument is ignored.

This request generates FocusIn and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match error
results). If the focus window later becomes not viewable, the new focus window depends on the
revert-to argument. If revert-to is Parent, the focus reverts to the parent (or the closest viewable
ancestor) and the new revert-to value is taken to be None. If revert-to is PointerRoot or None,
the focus reverts to that value. When the focus reverts, FocusIn and FocusOut events are gener-
ated, but the last-focus-change time is not affected.

GetInputFocus
_)

focus: WINDOW or PointerRoot or None
revert-to: { Parent, PointerRoot, None }

This request returns the current focus state.

QueryKeymap
%
keys: LISTofCARDS

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1 indicates
that the corresponding key is currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least significant bit in the byte represent-
ing key 8N. Note that the logical state of a device (as seen by means of the protocol) may lag the
physical state if device event processing is frozen.

36

X Protocol X11, Release 6.7 DRAFT

OpenFont

fid: FONT
name: STRINGS8

Errors: Alloc, IDChoice, Name

This request loads the specified font, if necessary, and associates identifier fid with it. The font
name should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. When
the characters ““?”” and ““*”” are used in a font name, a pattern match is performed and any match-
ing font is used. In the pattern, the “?”” character (octal value 77) will match any single character,
and the “*” character (octal value 52) will match any number of characters. A structured format
for font names is specified in the X.Org standard X Logical Font Description Conventions.

Fonts are not associated with a particular screen and can be stored as a component of any graphics
context.

CloseFont
font: FONT

Errors: Font

This request deletes the association between the resource ID and the font. The font itself will be
freed when no other resource references it.

37

-

X Protocol

QueryFont
font: FONTABLE
%

X11, Release 6.7 DRAFT

font-info: FONTINFO
char-infos: LISTofCHARINFO

where:

FONTINFO:

[draw-direction: { LeftToRight, RightToLeft }
min-char-or-byte2, max-char-or-byte2: CARD16
min-bytel, max-bytel: CARDS

all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16

properties: LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value>]
CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT16
attributes: CARD16]

Errors: Font

This request returns logical information about a font. If a gcontext is given for font, the currently

contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a positive, Left-
ToRight, or a negative, RightToLeft, character-width metric. The core protocol defines no sup-

port for vertical text.

If min-bytel and max-bytel are both zero, then min-char-or-byte2 specifies the linear character
index corresponding to the first element of char-infos, and max-char-or-byte2 specifies the linear
character index of the last element. If either min-bytel or max-bytel are nonzero, then both min-
char-or-byte2 and max-char-or-byte2 will be less than 256, and the 2-byte character index values

corresponding to char-infos element N (counting from 0) are:

bytel = N/D + min-bytel
byte2 = N\\D + min-char-or-byte2

where:

D = max-char-or-byte2 — min-char-or-byte2 + 1

/ = integer division
\\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and the effective

char-infos is one filled with this char-info, of length:

38

X Protocol X11, Release 6.7 DRAFT

L =D * (max-bytel — min-bytel + 1)

That is, all glyphs in the specified linear or matrix range have the same information, as given by
min-bounds (and max-bounds). If all-chars-exist is True, then all characters in char-infos have
nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or nonexistent char-
acter is used. Note that default-char is a CARD16, not CHAR2B. For a font using 2-byte matrix
format, the default-char has bytel in the most significant byte and byte2 in the least significant
byte. If the default-char itself specifies an undefined or nonexistent character, then no printing is
performed for an undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum values of each individual
CHARINFO component over all char-infos (ignoring nonexistent characters). The bounding box
of the font (that is, the smallest rectangle enclosing the shape obtained by superimposing all char-
acters at the same origin [x,y]) has its upper-left coordinate at:

[x + min-bounds.left-side-bearing, y — max-bounds.ascent]
with a width of:

max-bounds.right-side-bearing — min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for determining line
spacing. Specific characters may extend beyond this. The font-descent is the logical extent of the
font at or below the baseline and is used for determining line spacing. Specific characters may
extend beyond this. If the baseline is at Y-coordinate y, then the logical extent of the font is inclu-
sive between the Y-coordinate values (y — font-ascent) and (y + font-descent — 1).

A font is not guaranteed to have any properties. The interpretation of the property value (for
example, INT32, CARD32) must be derived from a priori knowledge of the property. A basic set
of font properties is specified in the X.Org standard X Logical Font Description Conventions.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle
enclosing the character’s shape), described in terms of CHARINFO components, is a rectangle
with its upper-left corner at:

[x + left-side-bearing, y — ascent]
with a width of:

right-side-bearing — left-side-bearing
and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters (when
descent is zero, only pixels with Y-coordinates less than y are drawn) and that the origin is logi-
cally viewed as being coincident with the left edge of a nonkerned character (when left-side-bear-
ing is zero, no pixels with X-coordinate less than x are drawn).

39

X Protocol X11, Release 6.7 DRAFT

Note that CHARINFO metric values can be negative.
A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE
string: STRING16

%

draw-direction: { LeftToRight, RightToLeft }
font-ascent: INT16

font-descent: INT16

overall-ascent: INT16

overall-descent: INT16

overall-width: INT32

overall-left: INT32

overall-right: INT32

Errors: Font

This request returns the logical extents of the specified string of characters in the specified font.

If a gcontext is given for font, the currently contained font is used. The draw-direction, font-
ascent, and font-descent are the same as described in QueryFont. The overall-ascent is the max-
imum of the ascent metrics of all characters in the string, and the overall-descent is the maximum
of the descent metrics. The overall-width is the sum of the character-width metrics of all charac-
ters in the string. For each character in the string, let W be the sum of the character-width metrics
of all characters preceding it in the string, let L. be the left-side-bearing metric of the character
plus W, and let R be the right-side-bearing metric of the character plus W. The overall-left is the
minimum L of all characters in the string, and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will interpret
each CHAR2B as a 16-bit number that has been transmitted most significant byte first (that is,
bytel of the CHARZ2B is taken as the most significant byte).

Characters with all zero metrics are ignored. If the font has no defined default-char, then unde-
fined characters in the string are also ignored.

ListFonts

pattern: STRINGS
max-names: CARD16

%
names: LISTof STRINGS8

This request returns a list of available font names (as controlled by the font search path; see Set-
FontPath request) that match the pattern. At most, max-names names will be returned. The pat-
tern should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. In the pat-
tern, the ““?”’ character (octal value 77) will match any single character, and the “*”’ character
(octal value 52) will match any number of characters. The returned names are in lowercase.

40

X Protocol X11, Release 6.7 DRAFT

ListFontsWithInfo

pattern: STRINGS
max-names: CARD16

ﬁ

name: STRING8
info FONTINFO
replies-hint: CARD32

where:
L FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about each font. The informa-
tion returned for each font is identical to what QueryFont would return except that the per-char-
acter metrics are not returned. Note that this request can generate multiple replies. With each
reply, replies-hint may provide an indication of how many more fonts will be returned. This num-
ber is a hint only and may be larger or smaller than the number of fonts actually returned. A zero
value does not guarantee that no more fonts will be returned. After the font replies, a reply with a
zero-length name is sent to indicate the end of the reply sequence.

SetFontPath
path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only one search path per server, not
one per client. The interpretation of the strings is operating-system-dependent, but the strings are
intended to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the server.

As a side effect of executing this request, the server is guaranteed to flush all cached information
about fonts for which there currently are no explicit resource IDs allocated.

The meaning of an error from this request is system specific.

GetFontPath
_)
path: LISTofSTRINGS

This request returns the current search path for fonts.

41

X Protocol X11, Release 6.7 DRAFT

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARDS

width, height: CARD16

Errors: Alloc, Drawable, IDChoice, Value

This request creates a pixmap and assigns the identifier pid to it. The width and height must be
nonzero (or a Value error results). The depth must be one of the depths supported by the root of
the specified drawable (or a Value error results). The initial contents of the pixmap are unde-
fined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap
pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pixmap storage
will be freed when no other resource references it.

CreateGC

cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Alloc, Drawable, Font, IDChoice, Match, Pixmap, Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext can be
used with any destination drawable having the same root and depth as the specified drawable; use
with other drawables results in a Match error.

The value-mask and value-list specify which components are to be explicitly initialized. The con-
text components are:

Component Type

function { Clear, And, AndReverse, Copy, AndInverted, NoOp, Xor,
Or, Nor, Equiv, Invert, OrReverse, CopyInverted,
OrlInverted, Nand, Set }

plane-mask CARD32
foreground CARD32
background CARD32
line-width CARDI16
line-style {Solid, OnOffDash, DoubleDash }

42

X Protocol

X11, Release 6.7 DRAFT

Component Type

cap-style { NotLast, Butt, Round, Projecting }
join-style { Miter, Round, Bevel }

fill-style {Solid, Tiled, OpaqueStippled, Stippled }
fill-rule { EvenOdd, Winding }

arc-mode { Chord, PieSlice }

tile PIXMAP

stipple PIXMAP

tile-stipple-x-origin INT16

tile-stipple-y-origin INT16

font FONT

subwindow-mode { ClipByChildren, IncludeInferiors }
graphics-exposures BOOL

clip-x-origin INT16

clip-y-origin INT16

clip-mask PIXMAP or None

dash-offset CARDI16

dashes CARDS

In graphics operations, given a source and destination pixel, the result is computed bitwise on cor-
responding bits of the pixels; that is, a Boolean operation is performed in each bit plane. The
plane-mask restricts the operation to a subset of planes, so the result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-mask. They
are simply truncated to the appropriate number of bits.

The meanings of the functions are:

Function Operation

Clear 0

And src AND dst
AndReverse src AND (NOT dst)
Copy src

AndInverted (NOT src) AND dst
NoOp dst

Xor src XOR dst

Or src OR dst

Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst

OrReverse src OR (NOT dst)
Copylnverted NOT src

OrlInverted (NOT src) OR dst

Nand (NOT src) OR (NOT dst)
Set 1

43

X Protocol X11, Release 6.7 DRAFT

The line-width is measured in pixels and can be greater than or equal to one, a wide line, or the
special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join or cap style, the bounding box of a wide line with endpoints [x1, y1], [x2,
y2] and width w is a rectangle with vertices at the following real coordinates:

[x1-(w*sn/2), yl+(w*cs/2)], [x1+(W*sn/2), yl—(w*cs/2)],
[x2—(w*sn/2), y2+(w*cs/2)], [X2+(W*sn/2), y2—(w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A pixel is
part of the line (and hence drawn) if the center of the pixel is fully inside the bounding box, which
is viewed as having infinitely thin edges. If the center of the pixel is exactly on the bounding box,
it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately below (y increasing direction) and if the interior or the
boundary is immediately to the right (x increasing direction). Note that this description is a math-
ematical model describing the pixels that are drawn for a wide line and does not imply that
trigonometry is required to implement such a model. Real or fixed point arithmetic is recom-
mended for computing the corners of the line endpoints for lines greater than one pixel in width.

Thin lines (zero line-width) are nominally one pixel wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm. First, if a line is
drawn unclipped from [x1,y1] to [x2,y2] and another line is drawn unclipped from [x1+dx,y1+dy]
to [x2+dx,y2+dy], then a point [X,y] is touched by drawing the first line if and only if the point
[x+dx,y+dy] is touched by drawing the second line. Second, the effective set of points compris-
ing a line cannot be affected by clipping. Thus, a point is touched in a clipped line if and only if
the point lies inside the clipping region and the point would be touched by the line when drawn
unclipped.

Note that a wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Implementors are encour-
aged to make this property true for thin lines, but it is not required. A line-width of zero may dif-
fer from a line-width of one in which pixels are drawn. In general, drawing a thin line will be
faster than drawing a wide line of width one, but thin lines may not mix well aesthetically with
wide lines because of the different drawing algorithms. If it is desirable to obtain precise and uni-
form results across all displays, a client should always use a line-width of one, rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:
Solid The full path of the line is drawn.

DoubleDash The full path of the line is drawn, but the even dashes are filled differently
than the odd dashes (see fill-style), with Butt cap-style used where even and
odd dashes meet.

OnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends of
the individual dashes (except NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a line-width of zero the final
endpoint is not drawn.

44

X Protocol X11, Release 6.7 DRAFT

Butt The result is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

Round The result is a circular arc with its diameter equal to the line-width, centered
on the endpoint; it is equivalent to Butt for line-width zero.

Projecting The result is square at the end, but the path continues beyond the endpoint for
a distance equal to half the line-width; it is equivalent to Butt for line-width
Zero.

The join-style defines how corners are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, a Bevel join-style is used instead.

Round The result is a circular arc with a diameter equal to the line-width, centered
on the joinpoint.

Bevel The result is Butt endpoint styles, and then the triangular notch is filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both end-
points, the semantics depends on the line-width and the cap-style:

NotLast thin This is device-dependent, but the desired effect is that nothing is
drawn.

Butt thin This is device-dependent, but the desired effect is that a single pixel
is drawn.

Round thin This is the same as Butt/thin.

Projecting thin This is the same as Butt/thin.

Butt wide Nothing is drawn.

Round wide The closed path is a circle, centered at the endpoint and with a diam-

eter equal to the line-width.

Projecting wide The closed path is a square, aligned with the coordinate axes, cen-
tered at the endpoint and with sides equal to the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was removed from the overall path. However, if the total path
consists of (or is reduced to) a single point joined with itself, the effect is the same as when the
cap-style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane with the tile/stipple replicated in all
dimensions. When that plane is superimposed on the drawable for use in a graphics operation,
the upper-left corner of some instance of the tile/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the
origin of whatever destination drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match error results).
The stipple pixmap must have depth one and must have the same root as the gcontext (or a
Match error results). For fill-style Stippled (but not fill-style OpaqueStippled), the stipple pat-
tern is tiled in a single plane and acts as an additional clip mask to be ANDed with the clip-mask.
Any size pixmap can be used for tiling or stippling, although some sizes may be faster to use than
others.

45

X Protocol X11, Release 6.7 DRAFT

The fill-style defines the contents of the source for line, text, and fill requests. For all text and fill
requests (for example, PolyText8, PolyText16, PolyFillRectangle, FillPoly, and PolyFillArc)
as well as for line requests with line-style Solid, (for example, PolyLine, PolySegment,
PolyRectangle, PolyArc) and for the even dashes for line requests with line-style OnOffDash
or DoubleDash:

Solid Foreground
Tiled Tile

OpaqueStippled A tile with the same width and height as stipple but with background
everywhere stipple has a zero and with foreground everywhere stipple
has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid Background

Tiled Same as for even dashes
OpaqueStippled Same as for even dashes
Stippled Background masked by stipple

The dashes value allowed here is actually a simplified form of the more general patterns that can

be set with SetDashes. Specifying a value of N here is equivalent to specifying the two element

list [N, N] in SetDashes. The value must be nonzero (or a Value error results). The meaning of
dash-offset and dashes are explained in the SetDashes request.

The clip-mask restricts writes to the destination drawable. Only pixels where the clip-mask has
bits set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-mask or where
the clip-mask has bits set to 0. The clip-mask affects all graphics requests, but it does not clip
sources. The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in a graphics request. If a pixmap is specified as the clip-mask, it must have
depth 1 and have the same root as the gcontext (or a Match error results). If clip-mask is None,
then pixels are always drawn, regardless of the clip origin. The clip-mask can also be set with the
SetClipRectangles request.

For ClipByChildren, both source and destination windows are additionally clipped by all view-
able InputOutput children. For IncludeInferiors, neither source nor destination window is
clipped by inferiors. This will result in including subwindow contents in the source and drawing
through subwindow boundaries of the destination. The use of IncludeInferiors with a source or
destination window of one depth with mapped inferiors of differing depth is not illegal, but the
semantics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly
requests. EvenOdd means a point is inside if an infinite ray with the point as origin crosses the
path an odd number of times. For Winding, a point is inside if an infinite ray with the point as
origin crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed from the
point. A counter-clockwise segment is one that crosses the ray from right to left as observed from
the point. The case where a directed line segment is coincident with the ray is uninteresting
because one can simply choose a different ray that is not coincident with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A pixel is
inside if the center point of the pixel is inside and the center point is not on the boundary. If the

46

X Protocol

X11, Release 6.7 DRAFT

center point is on the boundary, the pixel is inside if and only if the polygon interior is immedi-
ately to its right (x increasing direction). Pixels with centers along a horizontal edge are a special
case and are inside if and only if the polygon interior is immediately below (y increasing direc-

tion).

The arc-mode controls filling in the PolyFillAre request.

The graphics-exposures flag controls GraphicsExposure event generation for CopyArea and
CopyPlane requests (and any similar requests defined by extensions).

The default component values are:

Component Default

function Copy

plane-mask all ones

foreground 0

background 1

line-width 0

line-style Solid

cap-style Butt

join-style Miter

fill-style Solid

fill-rule EvenOdd

arc-mode PieSlice

tile Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones

tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset

dashes

0

0
<server-dependent-font>
ClipByChildren

True

0

0

None

0

4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If the pixmap is

later used as the destination for a graphics request, the change might or might not be reflected in
the gcontext. If the pixmap is used simultaneously in a graphics request as both a destination and
as a tile or stipple, the results are not defined.

It is quite likely that some amount of gcontext information will be cached in display hardware and
that such hardware can only cache a small number of gcontexts. Given the number and complex-
ity of components, clients should view switching between gcontexts with nearly identical state as
significantly more expensive than making minor changes to a single gcontext.

47

X Protocol X11, Release 6.7 DRAFT

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Alloc, Font, GContext, Match, Pixmap, Value

This request changes components in gc. The value-mask and value-list specify which compo-
nents are to be changed. The values and restrictions are the same as for CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request on the context.
Changing dash-offset or dashes overrides any previous SetDashes request on the context.

The order in which components are verified and altered is server-dependent. If an error is gener-
ated, a subset of the components may have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors: Alloc, GContext, Match, Value

This request copies components from src-gc to dst-gc. The value-mask specifies which compo-
nents to copy, as for CreateGC. The two gcontexts must have the same root and the same depth
(or a Match error results).

SetDashes

gc: GCONTEXT
dash-offset: CARDI16
dashes: LISTofCARDS

Errors: Alloc, GContext, Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be empty (or
a Value error results). Specifying an odd-length list is equivalent to specifying the same list con-
catenated with itself to produce an even-length list. The initial and alternating elements of dashes
are the even dashes; the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero (or a Value error results). The dash-offset defines the phase
of the pattern, specifying how many pixels into dashes the pattern should actually begin in any
single graphics request. Dashing is continuous through path elements combined with a join-style
but is reset to the dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between —45 and +45 degrees or between 135 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

For any graphics primitive, the computation of the endpoint of an individual dash only depends
on the geometry of the primitive, the start position of the dash, the direction of the dash, and the

438

X Protocol X11, Release 6.7 DRAFT

dash length.

For any graphics primitive, the total set of pixels used to render the primitive (both even and odd
numbered dash elements) with DoubleDash line-style is the same as the set of pixels used to ren-
der the primitive with Solid line-style.

For any graphics primitive, if the primitive is drawn with OnOffDash or DoubleDash line-style
unclipped at position [X,y] and again at position [x+dx,y+dy], then a point [x1,y1] is included in a
dash in the first instance if and only if the point [x1+dx,y1+dy] is included in the dash in the sec-
ond instance. In addition, the effective set of points comprising a dash cannot be affected by clip-
ping. A point is included in a clipped dash if and only if the point lies inside the clipping region
and the point would be included in the dash when drawn unclipped.

SetClipRectangles

gc: GCONTEXT

clip-x-origin, clip-y-origin: INT16

rectangles: LISTofRECTANGLE

ordering: { UnSorted, YSorted, YXSorted, YXBanded }

Errors: Alloc, GContext, Match, Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip origin.
Output will be clipped to remain contained within the rectangles. The clip origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics request. The rec-
tangle coordinates are interpreted relative to the clip origin. The rectangles should be noninter-
secting, or graphics results will be undefined. Note that the list of rectangles can be empty, which
effectively disables output. This is the opposite of passing None as the clip-mask in CreateGC
and ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is specified,
the server may generate a Match error, but it is not required to do so. If no error is generated, the
graphics results are undefined. UnSorted means that the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted additionally
constrains YSorted order in that all rectangles with an equal Y origin are nondecreasing in their
X origin. YXBanded additionally constrains YXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have identical Y origins and Y extents.

FreeGC
gc: GCONTEXT
Errors: GContext

This request deletes the association between the resource ID and the gcontext and destroys the
gcontext.

49

X Protocol X11, Release 6.7 DRAFT

ClearArea

window: WINDOW
x,y: INT16

width, height: CARD16
exposures: BOOL

Errors: Match, Value, Window

The x and y coordinates are relative to the window’s origin and specify the upper-left corner of
the rectangle. If width is zero, it is replaced with the current width of the window minus x. If
height is zero, it is replaced with the current height of the window minus y. If the window has a
defined background tile, the rectangle is tiled with a plane-mask of all ones and function of Copy
and a subwindow-mode of ClipByChildren. If the window has background None, the contents
of the window are not changed. In either case, if exposures is True, then one or more exposure
events are generated for regions of the rectangle that are either visible or are being retained in a
backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified rectangle of dst-
drawable. The src-x and src-y coordinates are relative to src-drawable’s origin. The dst-x and
dst-y are relative to dst-drawable’s origin, each pair specifying the upper-left corner of the rectan-
gle. The src-drawable must have the same root and the same depth as dst-drawable (or a Match
error results).

If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, then those regions are not
copied, but the following occurs on all corresponding destination regions that are either visible or
are retained in backing-store. If the dst-drawable is a window with a background other than
None, these corresponding destination regions are tiled (with plane-mask of all ones and function
Copy) with that background. Regardless of tiling and whether the destination is a window or a
pixmap, if graphics-exposures in gc is True, then GraphicsExposure events for all correspond-
ing destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then a NoExpo-
sure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-origin, clip-
y-origin, clip-mask

50

X Protocol X11, Release 6.7 DRAFT

CopyPlane

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

bit-plane: CARD32

Errors: Drawable, GContext, Match, Value

The src-drawable must have the same root as dst-drawable (or a Match error results), but it need
not have the same depth. The bit-plane must have exactly one bit set to 1 and the value of bit-
plane must be less than 2" where 7 is the depth of src-drawable (or a Value error results). Effec-
tively, a pixmap of the same depth as dst-drawable and with size specified by the source region is
formed using the foreground/background pixels in gc (foreground everywhere the bit-plane in src-
drawable contains a bit set to 1, background everywhere the bit-plane contains a bit set to 0), and
the equivalent of a CopyArea is performed, with all the same exposure semantics. This can also
be thought of as using the specified region of the source bit-plane as a stipple with a fill-style of
OpaqueStippled for filling a rectangular area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint

drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: { Origin, Previous }
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request combines the foreground pixel in gc with the pixel at each point in the drawable.
The points are drawn in the order listed.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin, clip-y-ori-
gin, clip-mask

PolyLine

drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: { Origin, Previous }
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines are drawn in
the order listed. The lines join correctly at all intermediate points, and if the first and last points

51

X Protocol X11, Release 6.7 DRAFT

coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine were a single filled shape.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.

When either of the two lines involved in a Bevel join is neither vertical nor horizontal, then the
slope and position of the line segment defining the bevel join edge is implementation dependent.
However, the computation of the slope and distance (relative to the join point) only depends on
the line width and the slopes of the two lines.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolySegment

drawable: DRAWABLE
gc: GCONTEXT
segments: LISTOfSEGMENT

where:
SEGMENT: [x1, y1, x2, y2: INT16]
Errors: Drawable, GContext, Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines are drawn in
the order listed. No joining is performed at coincident endpoints. For any given line, no pixel is
drawn more than once. If lines intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style, subwindow-
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolyRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a five-point PolyLine were speci-
fied for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the
upper-left corner of the rectangle.

52

X Protocol X11, Release 6.7 DRAFT

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and two angles.
The angles are signed integers in degrees scaled by 64, with positive indicating counterclockwise
motion and negative indicating clockwise motion. The start of the arc is specified by anglel rela-
tive to the three-o’clock position from the center of the rectangle, and the path and extent of the
arc is specified by angle2 relative to the start of the arc. If the magnitude of angle2 is greater than
360 degrees, it is truncated to 360 degrees. The x and y coordinates of the rectangle are relative
to the origin of the drawable. For an arc specified as [x,y,w,h,al,a2], the origin of the major and
minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse
intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at
[x+(w/2),y] and [x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are
not truncated to discrete coordinates.

For a wide line with line-width Iw, the ideal bounding outlines for filling are given by the two in-
finitely thin paths consisting of all points whose perpendicular distance from a tangent to the path
of the circle/ellipse is equal to Iw/2 (which may be a fractional value). When the width and
height of the arc are not equal and both are nonzero, then the actual bounding outlines are imple-
mentation dependent. However, the computation of the shape and position of the bounding out-
lines (relative to the center of the arc) only depends on the width and height of the arc and the
line-width.

The cap-style is applied the same as for a line corresponding to the tangent of the circle/ellipse at
the endpoint. When the angle of an arc face is not an integral multiple of 90 degrees, and the
width and height of the arc are both are nonzero, then the shape and position of the cap at that
face is implementation dependent. However, for a Butt cap, the face is defined by a straight line,
and the computation of the position (relative to the center of the arc) and the slope of the line only
depends on the width and height of the arc and the angle of the arc face. For other cap styles, the
computation of the position (relative to the center of the arc) and the shape of the cap only
depends on the width and height of the arc, the line-width, the angle of the arc face, and the direc-
tion (clockwise or counter clockwise) of the arc from the endpoint.

The join-style is applied the same as for two lines corresponding to the tangents of the cir-
cles/ellipses at the join point. When the width and height of both arcs are nonzero, and the angle
of either arc face is not an integral multiple of 90 degrees, then the shape of the join is implemen-
tation dependent. However, the computation of the shape only depends on the width and height
of each arc, the line-width, the angles of the two arc faces, the direction (clockwise or counter
clockwise) of the arcs from the join point, and the relative orientation of the two arc center points.

53

X Protocol X11, Release 6.7 DRAFT

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the effectively skewed
coordinate system of the ellipse (for a circle, the angles and coordinate systems are identical).
The relationship between these angles and angles expressed in the normal coordinate system of
the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64)
in the range [0,2*PI). The atan returns a value in the range [-PI/2,P1/2]. The adjust is:

0 for normal-angle in the range [0,P1/2)
PI for normal-angle in the range [P1/2,(3*PI)/2)
2*PlI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the first point in
the following arc, the two arcs will join correctly. If the first point in the first arc coincides with
the last point in the last arc, the two arcs will join correctly. For any given arc, no pixel is drawn
more than once. If two arcs join correctly and the line-width is greater than zero and the arcs
intersect, no pixel is drawn more than once. Otherwise, the intersecting pixels of intersecting arcs
are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent draws the
same pixels as specifying the other endpoint and an equivalent counterclockwise extent, except as
it affects joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

FillPoly

drawable: DRAWABLE

gc: GCONTEXT

shape: { Complex, Nonconvex, Convex }
coordinate-mode: { Origin, Previous }
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point. No pixel of the region is drawn more
than once.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex means the
path may self-intersect. Contiguous coincident points in the path are not treated as self-intersec-
tion.

Nonconvex means the path does not self-intersect, but the shape is not wholly convex. If known
by the client, specifying Nonconvex over Complex may improve performance. If Nonconvex is

54

X Protocol X11, Release 6.7 DRAFT

specified for a self-intersecting path, the graphics results are undefined.

Convex means that for every pair of points inside the polygon, the line segment connecting them
does not intersect the path. If known by the client, specifying Convex can improve performance.
If Convex is specified for a path that is not convex, the graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-origin, clip-y-
origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FillPoly were specified for each rec-
tangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the
upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described by the speci-
fied arc and one or two line segments, depending on the arc-mode. For Chord, the single line
segment joining the endpoints of the arc is used. For PieSlice, the two line segments joining the
endpoints of the arc with the center point are used.

For an arc specified as [X,y,w,h,al,a2], the origin of the major and minor axes is at
[x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse intersects the
horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and
[x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are not truncated to
discrete coordinates.

55

X Protocol X11, Release 6.7 DRAFT

The arc angles are interpreted as specified in the PolyArc request. When the angle of an arc face
is not an integral multiple of 90 degrees, then the precise endpoint on the arc is implementation
dependent. However, for Chord arc-mode, the computation of the pair of endpoints (relative to
the center of the arc) only depends on the width and height of the arc and the angles of the two
arc faces. For PieSlice arc-mode, the computation of an endpoint only depends on the angle of
the arc face for that endpoint and the ratio of the arc width to arc height.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than once. If
regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-origin, clip-
y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PutImage

drawable: DRAWABLE

gc: GCONTEXT

depth: CARDS

width, height: CARD16

dst-x, dst-y: INT16

left-pad: CARDS

format: { Bitmap, XYPixmap, ZPixmap }
data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable. The dst-x and dst-y coordi-
nates are relative to the drawable’s origin.

If Bitmap format is used, then depth must be one (or a Match error results), and the image must
be in XY format. The foreground pixel in gc defines the source for bits set to 1 in the image, and
the background pixel defines the source for the bits set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable (or a Match
error results). For XYPixmap, the image must be sent in XY format. For ZPixmap, the image
must be sent in the Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error results). For Bitmap and
XYPixmap format, left-pad must be less than bitmap-scanline-pad as given in the server connec-
tion setup information (or a Match error results). The first left-pad bits in every scanline are to
be ignored by the server. The actual image begins that many bits into the data. The width argu-
ment defines the width of the actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background

56

-

X Protocol X11, Release 6.7 DRAFT

GetImage

drawable: DRAWABLE

x,y: INT16

width, height: CARD16
plane-mask: CARD32

format: { XYPixmap, ZPixmap }

%

depth: CARDS
visual: VISUALID or None
data: LISTofBYTE

Errors: Drawable, Match, Value

This request returns the contents of the given rectangle of the drawable in the given format. The x
and y coordinates are relative to the drawable’s origin and define the upper-left corner of the rec-
tangle. If XYPixmap is specified, only the bit planes specified in plane-mask are transmitted,
with the planes appearing from most significant to least significant in bit order. If ZPixmap is
specified, then bits in all planes not specified in plane-mask are transmitted as zero. Range check-
ing is not performed on plane-mask; extraneous bits are simply ignored. The returned depth is as
specified when the drawable was created and is the same as a depth component in a FORMAT
structure (in the connection setup), not a bits-per-pixel component. If the drawable is a window,
its visual type is returned. If the drawable is a pixmap, the visual is None.

If the drawable is a pixmap, then the given rectangle must be wholly contained within the pixmap
(or a Match error results). If the drawable is a window, the window must be viewable, and it
must be the case that, if there were no inferiors or overlapping windows, the specified rectangle of
the window would be fully visible on the screen and wholly contained within the outside edges of
the window (or a Match error results). Note that the borders of the window can be included and
read with this request. If the window has a backing store, then the backing-store contents are
returned for regions of the window that are obscured by noninferior windows; otherwise, the
returned contents of such obscured regions are undefined. Also undefined are the returned con-
tents of visible regions of inferiors of different depth than the specified window. The pointer cur-
sor image is not included in the contents returned.

This request is not general-purpose in the same sense as other graphics-related requests. It is
intended specifically for rudimentary hardcopy support.

57

-

X Protocol X11, Release 6.7 DRAFT

PolyText8

drawable: DRAWABLE
gc: GCONTEXT

x,y: INT16

items: LISTof TEXTITEMS

where:

TEXTITEMS: TEXTELTS8 or FONT
TEXTELTS: [delta: INT8
string: STRINGS]

Errors: Drawable, Font, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). Each text item is processed in turn. A font item causes the
font to be stored in gc and to be used for subsequent text. Switching among fonts does not affect
the next character origin. A text element delta specifies an additional change in the position along
the x axis before the string is drawn; the delta is always added to the character origin. Each char-
acter image, as defined by the font in gc, is treated as an additional mask for a fill operation on the
drawable.

All contained FONTSs are always transmitted most significant byte first.
If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as a byte2 value
of a CHAR2B with a bytel value of zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin, clip-y-ori-
gin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyText16

drawable: DRAWABLE

gc: GCONTEXT

x,y: INT16

items: LISTofTEXTITEM16

where:

TEXTITEMI16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8
string: STRING16]

Errors: Drawable, Font, GContext, Match

This request is similar to PolyText8, except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each
CHARZ2B as a 16-bit number that has been transmitted most significant byte first (that is, bytel of
the CHARZ2B is taken as the most significant byte).

58

X Protocol X11, Release 6.7 DRAFT

ImageText8

drawable: DRAWABLE
gc: GCONTEXT

x,y: INT16

string: STRINGS

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). The effect is first to fill a destination rectangle with the
background pixel defined in gc and then to paint the text with the foreground pixel. The upper-
left corner of the filled rectangle is at:

[x, y — font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a QueryTex-
tExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective function is
Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as a byte2 value
of a CHAR2B with a bytel value of zero.

GC components: plane-mask, foreground, background, font, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

ImageText16

drawable: DRAWABLE
gc: GCONTEXT

x,y: INT16

string: STRING16

Errors: Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most significant byte first (that is, bytel of
the CHARZ2B is taken as the most significant byte).

59

X Protocol X11, Release 6.7 DRAFT

CreateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All}

Errors: Alloc, IDChoice, Match, Value, Window

This request creates a colormap of the specified visual type for the screen on which the window
resides and associates the identifier mid with it. The visual type must be one supported by the
screen (or a Match error results). The initial values of the colormap entries are undefined for
classes GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and True-
Color, the entries will have defined values, but those values are specific to the visual and are not
defined by the core protocol. For StaticGray, StaticColor, and TrueColor, alloc must be spec-
ified as None (or a Match error results). For the other classes, if alloc is None, the colormap
initially has no allocated entries, and clients can allocate entries.

If alloc is All, then the entire colormap is allocated writable. The initial values of all allocated
entries are undefined. For GrayScale and PseudoColor, the effect is as if an AllocColorCells
request returned all pixel values from zero to N — 1, where N is the colormap-entries value in the
specified visual. For DirectColor, the effect is as if an AllocColorPlanes request returned a
pixel value of zero and red-mask, green-mask, and blue-mask values containing the same bits as
the corresponding masks in the specified visual. However, in all cases, none of these entries can
be freed with FreeColors.

FreeColormap
cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the colormap and frees the col-
ormap storage. If the colormap is an installed map for a screen, it is uninstalled (see Uninstall-
Colormap request). If the colormap is defined as the colormap for a window (by means of Cre-
ateWindow or ChangeWindowA ttributes), the colormap for the window is changed to None,
and a ColormapNotify event is generated. The protocol does not define the colors displayed for
a window with a colormap of None.

This request has no effect on a default colormap for a screen.

CopyColormapAndFree
mid, src-cmap: COLORMAP
Errors: Alloc, Colormap, IDChoice

This request creates a colormap of the same visual type and for the same screen as src-cmap, and
it associates identifier mid with it. It also moves all of the client’s existing allocations from src-
cmap to the new colormap with their color values intact and their read-only or writable character-
istics intact, and it frees those entries in src-cmap. Color values in other entries in the new col-
ormap are undefined. If src-cmap was created by the client with alloc All (see CreateColormap

60

X Protocol X11, Release 6.7 DRAFT

request), then the new colormap is also created with alloc All, all color values for all entries are
copied from src-cmap, and then all entries in src-cmap are freed. If src-cmap was not created by
the client with alloc All, then the allocations to be moved are all those pixels and planes that have
been allocated by the client using either AllocColor, AllocNamedColor, AllocColorCells, or
AllocColorPlanes and that have not been freed since they were allocated.

InstallColormap
cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All windows associated with
this colormap immediately display with true colors. As a side effect, additional colormaps might
be implicitly installed or uninstalled by the server. Which other colormaps get installed or unin-
stalled is server-dependent except that the required list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on every window
having cmap as an attribute. In addition, for every other colormap that is installed or uninstalled
as a result of the request, a ColormapNotify event is generated on every window having that col-
ormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list and are
called the required list. The length of the required list is at most M, where M is the min-installed-
maps specified for the screen in the connection setup. The required list is maintained as follows.
When a colormap is an explicit argument to InstallColormap, it is added to the head of the list;
the list is truncated at the tail, if necessary, to keep the length of the list to at most M. When a
colormap is an explicit argument to UninstallColormap and it is in the required list, it is
removed from the list. A colormap is not added to the required list when it is installed implicitly
by the server, and the server cannot implicitly uninstall a colormap that is in the required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap
cmap: COLORMAP

Errors: Colormap

If cmap is on the required list for its screen (see InstallColormap request), it is removed from
the list. As a side effect, cmap might be uninstalled, and additional colormaps might be implicitly
installed or uninstalled. Which colormaps get installed or uninstalled is server-dependent except
that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every window having
cmap as an attribute. In addition, for every other colormap that is installed or uninstalled as a
result of the request, a ColormapNotify event is generated on every window having that col-
ormap as an attribute.

61

X Protocol X11, Release 6.7 DRAFT

ListInstalledColormaps
window: WINDOW
N
cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen of the specified win-
dow. The order of colormaps is not significant, and there is no explicit indication of the required
list (see InstallColormap request).

AllocColor

cmap: COLORMAP

red, green, blue: CARD16
%

pixel: CARD32

red, green, blue: CARD16

Errors: Alloc, Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB values pro-
vided by the hardware. It also returns the pixel and the RGB values actually used. Multiple
clients requesting the same effective RGB values can be assigned the same read-only entry, allow-
ing entries to be shared.

AllocNamedColor

cmap: COLORMAP
name: STRINGS

%

pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Alloc, Colormap, Name

This request looks up the named color with respect to the screen associated with the colormap.
Then, it does an AllocColor on cmap. The name should use the ISO Latin-1 encoding, and
uppercase and lowercase do not matter. The exact RGB values specify the true values for the
color, and the visual values specify the values actually used in the colormap.

62

-

X Protocol X11, Release 6.7 DRAFT

AllocColorCells

cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL

%
pixels, masks: LISTofCARD32
Errors: Alloc, Colormap, Value

The number of colors must be positive, and the number of planes must be nonnegative (or a
Value error results). If C colors and P planes are requested, then C pixels and P masks are
returned. No mask will have any bits in common with any other mask or with any of the pixels.
By ORing together masks and pixels, C*2” distinct pixels can be produced; all of these are allo-
cated writable by the request. For GrayScale or PseudoColor, each mask will have exactly one
bit set to 1; for DirectColor, each will have exactly three bits set to 1. If contiguous is True and
if all masks are ORed together, a single contiguous set of bits will be formed for GrayScale or
PseudoColor, and three contiguous sets of bits (one within each pixel subfield) for DirectColor.
The RGB values of the allocated entries are undefined.

AllocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL

%

pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the reds, greens, and blues must be nonnegative (or a
Value error results). If C colors, R reds, G greens, and B blues are requested, then C pixels are
returned, and the masks have R, G, and B bits set, respectively. If contiguous is True, then each
mask will have a contiguous set of bits. No mask will have any bits in common with any other
mask or with any of the pixels. For DirectColor, each mask will lie within the corresponding
pixel subfield. By ORing together subsets of masks with pixels, C*2%*9*8 distinct pixels can be
produced; all of these are allocated writable by the request. The initial RGB values of the allo-
cated entries are undefined. In the colormap, there are only C*2% independent red entries, C*2¢
independent green entries, and C*2% independent blue entries. This is true even for Pseudo-
Color. When the colormap entry for a pixel value is changed using StoreColors or Store-
NamedColor, the pixel is decomposed according to the masks and the corresponding indepen-
dent entries are updated.

63

X Protocol X11, Release 6.7 DRAFT

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32

Errors: Access, Colormap, Value

The plane-mask should not have any bits in common with any of the pixels. The set of all pixels
is produced by ORing together subsets of plane-mask with the pixels. The request frees all of
these pixels that were allocated by the client (using AllocColor, AllocNamedColor, AllocCol-
orCells, and AllocColorPlanes). Note that freeing an individual pixel obtained from AllocCol-
orPlanes may not actually allow it to be reused until all of its related pixels are also freed. Simi-
larly, a read-only entry is not actually freed until it has been freed by all clients, and if a client
allocates the same read-only entry multiple times, it must free the entry that many times before
the entry is actually freed.

All specified pixels that are allocated by the client in cmap are freed, even if one or more pixels
produce an error. A Value error is generated if a specified pixel is not a valid index into cmap.
An Access error is generated if a specified pixel is not allocated by the client (that is, is unallo-
cated or is only allocated by another client) or if the colormap was created with all entries
writable (using an alloc value of All in CreateColormap). If more than one pixel is in error, it is
arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access, Colormap, Value

This request changes the colormap entries of the specified pixels. The do-red, do-green, and do-
blue fields indicate which components should actually be changed. If the colormap is an installed
map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed, even if one or
more pixels produce an error. A Value error is generated if a specified pixel is not a valid index
into cmap, and an Access error is generated if a specified pixel is unallocated or is allocated read-
only. If more than one pixel is in error, it is arbitrary as to which pixel is reported.

64

X Protocol X11, Release 6.7 DRAFT

StoreNamedColor

cmap: COLORMAP

pixel: CARD32

name: STRINGS

do-red, do-green, do-blue: BOOL

Errors: Access, Colormap, Name, Value

This request looks up the named color with respect to the screen associated with cmap and then
does a StoreColors in cmap. The name should use the ISO Latin-1 encoding, and uppercase and
lowercase do not matter. The Access and Value errors are the same as in StoreColors.

QueryColors

cmap: COLORMAP
pixels: LISTofCARD32

N
colors: LISTofRGB
where:
RGB: [red, green, blue: CARDI16]

Errors: Colormap, Value

This request returns the hardware-specific color values stored in cmap for the specified pixels.
The values returned for an unallocated entry are undefined. A Value error is generated if a pixel
is not a valid index into cmap. If more than one pixel is in error, it is arbitrary as to which pixel is
reported.

LookupColor

cmap: COLORMAP
name: STRINGS

%

exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Colormap, Name

This request looks up the string name of a color with respect to the screen associated with cmap
and returns both the exact color values and the closest values provided by the hardware with
respect to the visual type of cmap. The name should use the ISO Latin-1 encoding, and upper-
case and lowercase do not matter.

65

X Protocol X11, Release 6.7 DRAFT

CreateCursor

cid: CURSOR

source: PIXMAP

mask: PIXMAP or None

fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x,y: CARDI16

Errors: Alloc, IDChoice, Match, Pixmap

This request creates a cursor and associates identifier cid with it. The foreground and background
RGB values must be specified, even if the server only has a StaticGray or GrayScale screen.
The foreground is used for the bits set to 1 in the source, and the background is used for the bits
set to 0. Both source and mask (if specified) must have depth one (or a Match error results), but
they can have any root. The mask pixmap defines the shape of the cursor. That is, the bits set to

1 in the mask define which source pixels will be displayed, and where the mask has bits set to 0,
the corresponding bits of the source pixmap are ignored. If no mask is given, all pixels of the
source are displayed. The mask, if present, must be the same size as the source (or a Match error
results). The x and y coordinates define the hotspot relative to the source’s origin and must be a
point within the source (or a Match error results).

The components of the cursor may be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The
server might or might not make a copy of the pixmap.

CreateGlyphCursor

cid: CURSOR

source-font: FONT

mask-font: FONT or None

source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Alloc, Font, IDChoice, Value

This request is similar to CreateCursor, except the source and mask bitmaps are obtained from
the specified font glyphs. The source-char must be a defined glyph in source-font, and if mask-
font is given, mask-char must be a defined glyph in mask-font (or a Value error results). The
mask font and character are optional. The origins of the source and mask (if it is defined) glyphs
are positioned coincidently and define the hotspot. The source and mask need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask is given, all pixels of the source are displayed. Note that source-char
and mask-char are CARD16, not CHAR2B. For 2-byte matrix fonts, the 16-bit value should be
formed with bytel in the most significant byte and byte2 in the least significant byte.

The components of the cursor may be transformed arbitrarily to meet display limitations.

The fonts can be freed immediately if no further explicit references to them are to be made.

66

X Protocol X11, Release 6.7 DRAFT

FreeCursor
cursor: CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the cursor. The cursor storage
will be freed when no other resource references it.

RecolorCursor

cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a screen, the
change is visible immediately.

QueryBestSize

class: { Cursor, Tile, Stipple }
drawable: DRAWABLE
width, height: CARD16

_)
width, height: CARD16
Errors: Drawable, Match, Value

This request returns the best size that is closest to the argument size. For Cursor, this is the
largest size that can be fully displayed. For Tile, this is the size that can be tiled fastest. For
Stipple, this is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and Stipple, the drawable indi-
cates the screen and also possibly the window class and depth. An InputOnly window cannot be
used as the drawable for Tile or Stipple (or a Match error results).

QueryExtension
name: STRINGS
N
present: BOOL
major-opcode: CARDS

first-event: CARDS
first-error: CARDS

This request determines if the named extension is present. If so, the major opcode for the exten-
sion is returned, if it has one. Otherwise, zero is returned. Any minor opcode and the request for-
mats are specific to the extension. If the extension involves additional event types, the base event

67

-

X Protocol X11, Release 6.7 DRAFT

type code is returned. Otherwise, zero is returned. The format of the events is specific to the
extension. If the extension involves additional error codes, the base error code is returned. Other-
wise, zero is returned. The format of additional data in the errors is specific to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase and lowercase matter.

ListExtensions
%
names: LISTofSTRINGS

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARDS8
keycodes: LISTofKEYCODE

%
status: { Success, Busy, Failed }

Errors: Alloc, Value

This request specifies the keycodes (if any) of the keys to be used as modifiers. The number of
keycodes in the list must be 8§*keycodes-per-modifier (or a Length error results). The keycodes
are divided into eight sets, with each set containing keycodes-per-modifier elements. The sets are
assigned to the modifiers Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and ModS5, in
order. Only nonzero keycode values are used within each set; zero values are ignored. All of the
nonzero keycodes must be in the range specified by min-keycode and max-keycode in the connec-
tion setup (or a Value error results). The order of keycodes within a set does not matter. If no
nonzero values are specified in a set, the use of the corresponding modifier is disabled, and the
modifier bit will always be zero. Otherwise, the modifier bit will be one whenever at least one of
the keys in the corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed (for example, if certain keys do
not generate up transitions in hardware, if auto-repeat cannot be disabled on certain keys, or if
multiple keys per modifier are not supported). The status reply is Failed if some such restriction
is violated, and none of the modifiers is changed.

If the new nonzero keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are logically in the down state, then the status reply is
Busy, and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping
%

keycodes-per-modifier: CARDS8
keycodes: LISTofKEYCODE

68

X Protocol X11, Release 6.7 DRAFT

This request returns the keycodes of the keys being used as modifiers. The number of keycodes
in the list is 8*keycodes-per-modifier. The keycodes are divided into eight sets, with each set
containing keycodes-per-modifier elements. The sets are assigned to the modifiers Shift, Lock,
Control, Mod1, Mod2, Mod3, Mod4, and ModS, in order. The keycodes-per-modifier value
is chosen arbitrarily by the server; zeroes are used to fill in unused elements within each set. If
only zero values are given in a set, the use of the corresponding modifier has been disabled. The
order of keycodes within each set is chosen arbitrarily by the server.

' ChangeKeyboardMapping

first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

L Errors: Alloc, Value

This request defines the symbols for the specified number of keycodes, starting with the specified
keycode. The symbols for keycodes outside this range remained unchanged. The number of ele-
ments in the keysyms list must be a multiple of keysyms-per-keycode (or a Length error results).
The first-keycode must be greater than or equal to min-keycode as returned in the connection set-
up (or a Value error results) and:

first-keycode + (keysyms-length / keysyms-per-keycode) — 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value error
results). KEYSYM number N (counting from zero) for keycode K has an index (counting from
zero) of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be large enough
to hold all desired symbols. A special KEYSYM value of NoSymbol should be used to fill in
unused elements for individual keycodes. It is legal for NoSymbol to appear in nontrailing posi-
tions of the effective list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored for reading and
writing by clients (see section 5).

' GetKeyboardMapping

first-keycode: KEYCODE
count: CARDS

%

keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

| Errors: Value

This request returns the symbols for the specified number of keycodes, starting with the specified
keycode. The first-keycode must be greater than or equal to min-keycode as returned in the

69

X Protocol X11, Release 6.7 DRAFT

connection setup (or a Value error results), and:

first-keycode + count — 1
must be less than or equal to max-keycode as returned in the connection setup (or a Value error
results). The number of elements in the keysyms list is:

count * keysyms-per-keycode
and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero)
of:

(K — first-keycode) * keysyms-per-keycode + N
in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large

enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to fill in
unused elements for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTof VALUE

Errors: Match, Value

This request controls various aspects of the keyboard. The value-mask and value-list specify
which controls are to be changed. The possible values are:

Control Type

key-click-percent ~ INTS8

bell-percent INT8
bell-pitch INT16
bell-duration INT16

led CARDS
led-mode {On, Off }
key KEYCODE

auto-repeat-mode { On, Off, Default }

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if
possible. Setting to —1 restores the default. Other negative values generate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if pos-
sible. Setting to —1 restores the default. Other negative values generate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to —1 restores the
default. Other negative values generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible. Setting to
—1 restores the default. Other negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if possible. If only
led-mode is specified, then the state of all LEDs are changed, if possible. At most 32 LEDs,
numbered from one, are supported. No standard interpretation of LEDs is defined. It is a Match

70

X Protocol X11, Release 6.7 DRAFT

error if an led is specified without an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that key is changed,
if possible. If only auto-repeat-mode is specified, then the global auto-repeat mode for the entire
keyboard is changed, if possible, without affecting the per-key settings. It is a Match error if a
key is specified without an auto-repeat-mode. Each key has an individual mode of whether or not
it should auto-repeat and a default setting for that mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode. When the
global mode is On, keys should obey their individual auto-repeat modes. When the global mode
is Off, no keys should auto-repeat. An auto-repeating key generates alternating KeyPress and
KeyRelease events. When a key is used as a modifier, it is desirable for the key not to auto-
repeat, regardless of the auto-repeat setting for that key.

A bell generator connected with the console but not directly on the keyboard is treated as if it
were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error is generated,
a subset of the controls may have been altered.

GetKeyboardControl
_)

key-click-percent: CARDS
bell-percent: CARDS
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: { On, Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs, the least signifi-
cant bit of led-mask corresponds to LED one, and each one bit in led-mask indicates an LED that
is lit. The auto-repeats is a bit vector; each one bit indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7, with the least significant bit in the byte representing key 8N.

Bell
percent: INTS8

Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume for the
keyboard, if possible. Percent can range from —100 to 100 inclusive (or a Value error results).
The volume at which the bell is rung when percent is nonnegative is:

base — [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

71

X Protocol X11, Release 6.7 DRAFT

SetPointerMapping
map : LISTofCARDS
N
status: { Success, Busy }

Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed starting from one.
The length of the list must be the same as GetPointerMapping would return (or a Value error
results). The index is a core button number, and the element of the list defines the effective num-
ber.

A zero element disables a button. Elements are not restricted in value by the number of physical
buttons, but no two elements can have the same nonzero value (or a Value error results).

If any of the buttons to be altered are logically in the down state, the status reply is Busy, and the
mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPointerMapping
%
map: LISTofCARDS

This request returns the current mapping of the pointer. Elements of the list are indexed starting
from one. The length of the list indicates the number of physical buttons.

The nominal mapping for a pointer is the identity mapping: mapl[i]=i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16

Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for movement
expressed as a fraction. For example, specifying 3/1 means the pointer moves three times as fast
as normal. The fraction can be rounded arbitrarily by the server. Acceleration only takes effect if
the pointer moves more than threshold number of pixels at once and only applies to the amount
beyond the threshold. Setting a value to —1 restores the default. Other negative values generate a
Value error, as does a zero value for acceleration-denominator.

72

X Protocol X11, Release 6.7 DRAFT

GetPointerControl
%

acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INT16
prefer-blanking : { Yes, No, Default }
allow-exposures: { Yes, No, Default }

Errors: Value

The timeout and interval are specified in seconds; setting a value to —1 restores the default. Other
negative values generate a Value error. If the timeout value is zero, screen-saver is disabled (but
an activated screen-saver is not deactivated). If the timeout value is nonzero, screen-saver is
enabled. Once screen-saver is enabled, if no input from the keyboard or pointer is generated for
timeout seconds, screen-saver is activated. For each screen, if blanking is preferred and the hard-
ware supports video blanking, the screen will simply go blank. Otherwise, if either exposures are
allowed or the screen can be regenerated without sending exposure events to clients, the screen is
changed in a server-dependent fashion to avoid phosphor burn. Otherwise, the state of the screens
does not change, and screen-saver is not activated. At the next keyboard or pointer input or at the
next ForceScreenSaver with mode Reset, screen-saver is deactivated, and all screen states are
restored.

If the server-dependent screen-saver method is amenable to periodic change, interval serves as a
hint about how long the change period should be, with zero hinting that no periodic change
should be made. Examples of ways to change the screen include scrambling the color map peri-
odically, moving an icon image about the screen periodically, or tiling the screen with the root
window background tile, randomly reorigined periodically.

GetScreenSaver
ﬁ

timeout, interval: CARD16
prefer-blanking: { Yes, No}
allow-exposures: { Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver
mode: { Activate, Reset }

Errors: Value

73

X Protocol X11, Release 6.7 DRAFT

If the mode is Activate and screen-saver is currently deactivated, then screen-saver is activated
(even if screen-saver has been disabled with a timeout value of zero). If the mode is Reset and
screen-saver is currently enabled, then screen-saver is deactivated (if it was activated), and the
activation timer is reset to its initial state as if device input had just been received.

ChangeHosts

mode: { Insert, Delete }
host: HOST

Errors: Access, Value

This request adds or removes the specified host from the access control list. When the access
control mechanism is enabled and a client attempts to establish a connection to the server, the
host on which the client resides must be in the access control list, or the client must have been
granted permission by a server-dependent method, or the server will refuse the connection.

The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).

An initial access control list can usually be specified, typically by naming a file that the server
reads at startup and reset.

The following address families are defined. A server is not required to support these families and
may support families not listed here. Use of an unsupported family, an improper address format,
or an improper address length within a supported family results in a Value error.

Note that use of a host address in the ChangeHosts request is deprecated. It is only useful when a
host has a unique, constant address, a requirement that is increasingly unmet as sites adopt
dynamically assigned addresses, network address translation gateways, IPv6 link local addresses,
and various other technologies. It also assumes all users of a host share equivalent access rights,
and as such has never been suitable for many multi-user machine environments. Instead, more
secure forms of authentication, such as those based on shared secrets or public key encryption, are
recommended.

For the Internet family, the address must be four bytes long. The address bytes are in standard IP
order; the server performs no automatic swapping on the address bytes. The Internet family sup-
ports IP version 4 addresses only.

For the InternetV6 family, the address must be sixteen bytes long. The address bytes are in stan-
dard IP order; the server performs no automatic swapping on the address bytes. The InternetV6
family supports IP version 6 addresses only.

For the DECnet family, the server performs no automatic swapping on the address bytes. A Phase
IV address is two bytes long: the first byte contains the least significant eight bits of the node
number, and the second byte contains the most significant two bits of the node number in the least
significant two bits of the byte and the area in the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is always the first
byte in the address, and the subnet number is always the second byte. The server performs no
automatic swapping on the address bytes.

74

Il

X Protocol X11, Release 6.7 DRAFT

ListHosts
%

mode: { Enabled, Disabled }
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list at connection
setup is currently enabled or disabled.

Each HOST is padded to a multiple of four bytes.

SetAccessControl
mode: { Enable, Disable }
Errors: Access, Value

This request enables or disables the use of the access control list at connection setups.

The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).

SetCloseDownMode
mode: {Destroy, RetainPermanent, RetainTemporary }

Errors: Value

This request defines what will happen to the client’s resources at connection close. A connection
starts in Destroy mode. The meaning of the close-down mode is described in section 10.

KillClient
resource: CARD32 or AllTemporary

Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that created the
resource. If the client has already terminated in either RetainPermanent or RetainTemporary
mode, all of the client’s resources are destroyed (see section 10). If AllTemporary is specified,
then the resources of all clients that have terminated in RetainTemporary are destroyed.

NoOperation

This request has no arguments and no results, but the request length field allows the request to be
any multiple of four bytes in length. The bytes contained in the request are uninterpreted by the
server.

This request can be used in its minimum four byte form as padding where necessary by client
libraries that find it convenient to force requests to begin on 64-bit boundaries.

75

X Protocol X11, Release 6.7 DRAFT

10. Connection Close

At connection close, all event selections made by the client are discarded. If the client has the
pointer actively grabbed, an UngrabPointer is performed. If the client has the keyboard actively
grabbed, an UngrabKeyboard is performed. All passive grabs by the client are released. If the
client has the server grabbed, an UngrabServer is performed. All selections (see SetSelec-
tionOwner request) owned by the client are disowned. If close-down mode (see SetCloseDown-
Mode request) is RetainPermanent or RetainTemporary, then all resources (including col-
ormap entries) allocated by the client are marked as permanent or temporary, respectively (but
this does not prevent other clients from explicitly destroying them). If the mode is Destroy, all
of the client’s resources are destroyed.

When a client’s resources are destroyed, for each window in the client’s save-set, if the window is
an inferior of a window created by the client, the save-set window is reparented to the closest
ancestor such that the save-set window is not an inferior of a window created by the client. If the
save-set window is unmapped, a MapWindow request is performed on it (even if it was not an
inferior of a window created by the client). The reparenting leaves unchanged the absolute coor-
dinates (with respect to the root window) of the upper-left outer corner of the save-set window.
After save-set processing, all windows created by the client are destroyed. For each nonwindow
resource created by the client, the appropriate Free request is performed. All colors and col-
ormap entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some connections. At every
transition to the state of having no connections as a result of a connection closing with a Destroy
close-down mode, the server resets its state as if it had just been started. This starts by destroying
all lingering resources from clients that have terminated in RetainPermanent or RetainTempo-
rary mode. It additionally includes deleting all but the predefined atom identifiers, deleting all
properties on all root windows, resetting all device maps and attributes (key click, bell volume,
acceleration), resetting the access control list, restoring the standard root tiles and cursors, restor-
ing the default font path, and restoring the input focus to state PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent or RetainTempo-
rary will not cause the server to reset.

11. Events

When a button press is processed with the pointer in some window W and no active pointer grab
is in progress, the ancestors of W are searched from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, then an active grab is started automati-
cally for the client receiving the event, and the last-pointer-grab time is set to the current server
time. The effect is essentially equivalent to a GrabButton with arguments:

Argument Value

event-window Event window

event-mask Client’s selected pointer events on the event window

pointer-mode and keyboard-mode Asynchronous

owner-events True if the client has OwnerGrabButton selected
on the event window, otherwise False

confine-to None

cursor None

76

X Protocol X11, Release 6.7 DRAFT

The grab is terminated automatically when the logical state of the pointer has all buttons released.
UngrabPointer and ChangeA ctivePointerGrab can both be used to modify the active grab.

KeyPress
KeyRelease
ButtonPress
ButtonRelease
MotionNotify

root, event: WINDOW

child: WINDOW or None
same-screen: BOOL

root-x, root-y, event-x, event-y: INT16
detail: <see below>

state: SETofKEYBUTMASK

time: TIMESTAMP

These events are generated either when a key or button logically changes state or when the
pointer logically moves. The generation of these logical changes may lag the physical changes if
device event processing is frozen. Note that KeyPress and KeyRelease are generated for all
keys, even those mapped to modifier bits. The source of the event is the window the pointer is in.
The window the event is reported with respect to is called the event window. The event window
is found by starting with the source window and looking up the hierarchy for the first window on
which any client has selected interest in the event (provided no intervening window prohibits
event generation by including the event type in its do-not-propagate-mask). The actual window
used for reporting can be modified by active grabs and, in the case of keyboard events, can be
modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the pointer coordi-
nates relative to root’s origin at the time of the event. Event is the event window. If the event
window is on the same screen as root, then event-x and event-y are the pointer coordinates rela-
tive to the event window’s origin. Otherwise, event-x and event-y are zero. If the source window
is an inferior of the event window, then child is set to the child of the event window that is an
ancestor of (or is) the source window. Otherwise, it is set to None. The state component gives
the logical state of the buttons and modifier keys just before the event. The detail component type
varies with the event type:

Event Component
KeyPress, KeyRelease KEYCODE
ButtonPress, ButtonRelease @ BUTTON
MotionNotify {Normal, Hint}

MotionNotify events are only generated when the motion begins and ends in the window. The
granularity of motion events is not guaranteed, but a client selecting for motion events is guaran-
teed to get at least one event when the pointer moves and comes to rest. Selecting PointerMo-
tion receives events independent of the state of the pointer buttons. By selecting some subset of
Button[1-5]Motion instead, MotionNotify events will only be received when one or more of the
specified buttons are pressed. By selecting ButtonMotion, MotionNotify events will be
received only when at least one button is pressed. The events are always of type MotionNotify,

77

X Protocol X11, Release 6.7 DRAFT

independent of the selection. If PointerMotionHint is selected, the server is free to send only
one MotionNotify event (with detail Hint) to the client for the event window until either the key
or button state changes, the pointer leaves the event window, or the client issues a QueryPointer
or GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW

child: WINDOW or None

same-screen: BOOL

root-x, root-y, event-x, event-y: INT16

mode: { Normal, Grab, Ungrab }

detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual }
focus: BOOL

state: SETofKEYBUTMASK

time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different window than
before, EnterNotify and LeaveNotify events are generated instead of a MotionNotify event.
Only clients selecting EnterWindow on a window receive EnterNotify events, and only clients
selecting LeaveWindow receive LeaveNotify events. The pointer position reported in the event
is always the final position, not the initial position of the pointer. The root is the root window for
this position, and root-x and root-y are the pointer coordinates relative to root’s origin at the time
of the event. Event is the event window. If the event window is on the same screen as root, then
event-x and event-y are the pointer coordinates relative to the event window’s origin. Otherwise,
event-x and event-y are zero. In a LeaveNotify event, if a child of the event window contains the
initial position of the pointer, then the child component is set to that child. Otherwise, it is None.
For an EnterNotify event, if a child of the event window contains the final pointer position, then
the child component is set to that child. Otherwise, it is None. If the event window is the focus
window or an inferior of the focus window, then focus is True. Otherwise, focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion events when a grab activates
have mode Grab, and pseudo-motion events when a grab deactivates have mode Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change are generated after any
hierarchy event caused by that change (that is, UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify), but the ordering of EnterNotify and LeaveNotify events
with respect to FocusOut, VisibilityNotify, and Expose events is not constrained.

Normal events are generated as follows:
When the pointer moves from window A to window B and A is an inferior of B:
. LeaveNotify with detail Ancestor is generated on A.

. LeaveNotify with detail Virtual is generated on each window between A and B exclusive
(in that order).

. EnterNotify with detail Inferior is generated on B.
When the pointer moves from window A to window B and B is an inferior of A:

. LeaveNotify with detail Inferior is generated on A.

78

X Protocol X11, Release 6.7 DRAFT

. EnterNotify with detail Virtual is generated on each window between A and B exclusive
(in that order).

. EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least common
ancestor:

. LeaveNotify with detail Nonlinear is generated on A.

. LeaveNotify with detail NonlinearVirtual is generated on each window between A and C
exclusive (in that order).

. EnterNotify with detail NonlinearVirtual is generated on each window between C and B
exclusive (in that order).

. EnterNotify with detail Nonlinear is generated on B.
When the pointer moves from window A to window B on different screens:
. LeaveNotify with detail Nonlinear is generated on A.

. If A is not a root window, LeaveNotify with detail NonlinearVirtual is generated on each
window above A up to and including its root (in order).

. If B is not a root window, EnterNotify with detail NonlinearVirtual is generated on each
window from B’s root down to but not including B (in order).

. EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window and before gen-
erating any actual ButtonPress event that activates the grab), G is the grab-window for the grab,
and P is the window the pointer is in:

. EnterNotify and LeaveNotify events with mode Grab are generated (as for Normal
above) as if the pointer were to suddenly warp from its current position in P to some posi-
tion in G. However, the pointer does not warp, and the pointer position is used as both the
initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease event that deacti-
vates the grab), G is the grab-window for the grab, and P is the window the pointer is in:

. EnterNotify and LeaveNotify events with mode Ungrab are generated (as for Normal
above) as if the pointer were to suddenly warp from some position in G to its current posi-
tion in P. However, the pointer does not warp, and the current pointer position is used as
both the initial and final positions for the events.

FocusIn
FocusOut

event: WINDOW

mode: { Normal, WhileGrabbed, Grab, Ungrab }

detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,
PointerRoot, None }

These events are generated when the input focus changes and are reported to clients selecting
FocusChange on the window. Events generated by SetInputFocus when the keyboard is not
grabbed have mode Normal. Events generated by SetInputFocus when the keyboard is grabbed
have mode WhileGrabbed. Events generated when a keyboard grab activates have mode Grab,
and events generated when a keyboard grab deactivates have mode Ungrab.

79

X Protocol X11, Release 6.7 DRAFT

All FocusOut events caused by a window unmap are generated after any UnmapNotify event,
but the ordering of FocusOut with respect to generated EnterNotify, LeaveNotify, Visibili-
tyNotify, and Expose events is not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the pointer is in
window P:

. FocusOut with detail Ancestor is generated on A.

. FocusOut with detail Virtual is generated on each window between A and B exclusive (in
order).

. FocusIn with detail Inferior is generated on B.

. If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, FocusIn with

detail Pointer is generated on each window below B down to and including P (in order).

When the focus moves from window A to window B, B is an inferior of A, and the pointer is in
window P:

. If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut with
detail Pointer is generated on each window from P up to but not including A (in order).

. FocusOut with detail Inferior is generated on A.

. FocusIn with detail Virtual is generated on each window between A and B exclusive (in
order).

. FocusIn with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least common ancestor,
and the pointer is in window P:

. If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P
up to but not including A (in order).

. FocusOut with detail Nonlinear is generated on A.

. FocusOut with detail NonlinearVirtual is generated on each window between A and C
exclusive (in order).

. FocusIn with detail NonlinearVirtual is generated on each window between C and B
exclusive (in order).

. FocusIn with detail Nonlinear is generated on B.

. If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B

down to and including P (in order).

When the focus moves from window A to window B on different screens and the pointer is in
window P:

. If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P
up to but not including A (in order).

. FocusOut with detail Nonlinear is generated on A.

. If A is not a root window, FocusQut with detail NonlinearVirtual is generated on each

window above A up to and including its root (in order).

. If B is not a root window, FocusIn with detail NonlinearVirtual is generated on each
window from B’s root down to but not including B (in order).

. FocusIn with detail Nonlinear is generated on B.

80

X Protocol X11, Release 6.7 DRAFT

. If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B
down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the pointer is in window
P:

. If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P
up to but not including A (in order).

. FocusOut with detail Nonlinear is generated on A.

. If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each
window above A up to and including its root (in order).

. FocusIn with detail PointerRoot (or None) is generated on all root windows.

. If the new focus is PointerRoot, FocusIn with detail Pointer is generated on each win-

dow from P’s root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the pointer is in window
P:

. If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each win-
dow from P up to and including P’s root (in order).

. FocusOut with detail PointerRoot (or None) is generated on all root windows.

. If A is not a root window, FocusIn with detail NonlinearVirtual is generated on each
window from A’s root down to but not including A (in order).

. FocusIn with detail Nonlinear is generated on A.

. If P is an inferior of A, FocusIn with detail Pointer is generated on each window below A

down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the pointer is in window
P:

J If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each win-
dow from P up to and including P’s root (in order).

. FocusOut with detail PointerRoot (or None) is generated on all root windows.
. FocusIn with detail None (or PointerRoot) is generated on all root windows.
. If the new focus is PointerRoot, FocusIn with detail Pointer is generated on each win-

dow from P’s root down to and including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress event that activates
the grab), G is the grab-window for the grab, and F is the current focus:

. FocusIn and FocusOut events with mode Grab are generated (as for Normal above) as
if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual KeyRelease event that deacti-
vates the grab), G is the grab-window for the grab, and F is the current focus:

. FocusIn and FocusOut events with mode Ungrab are generated (as for Normal above)
as if the focus were to change from G to F.

81

X Protocol X11, Release 6.7 DRAFT

KeymapNotify
keys: LISTofCARDS

The value is a bit vector as described in QueryKeymap. This event is reported to clients select-
ing KeymapState on a window and is generated immediately after every EnterNotify and
FocusIn.

Expose

window: WINDOW
X, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is generated when no valid
contents are available for regions of a window, and either the regions are visible, the regions are
viewable and the server is (perhaps newly) maintaining backing store on the window, or the win-
dow is not viewable but the server is (perhaps newly) honoring window’s backing-store attribute
of Always or WhenMapped. The regions are decomposed into an arbitrary set of rectangles,
and an Expose event is generated for each rectangle.

For a given action causing exposure events, the set of events for a given window are guaranteed to
be reported contiguously. If count is zero, then no more Expose events for this window follow.
If count is nonzero, then at least that many more Expose events for this window follow (and pos-
sibly more).

The x and y coordinates are relative to window’s origin and specify the upper-left corner of a rec-
tangle. The width and height specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any hierarchy event caused
by that change (for example, UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,
CirculateNotify). All Expose events on a given window are generated after any VisibilityNo-
tify event on that window, but it is not required that all Expose events on all windows be gener-
ated after all Visibilitity events on all windows. The ordering of Expose events with respect to
FocusOut, EnterNotify, and LeaveNotify events is not constrained.

GraphicsExposure

drawable: DRAWABLE

X, y, width, height: CARD16
count: CARDI16
major-opcode: CARDS
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is
generated when a destination region could not be computed due to an obscured or out-of-bounds
source region. All of the regions exposed by a given graphics request are guaranteed to be
reported contiguously. If count is zero then no more GraphicsExposure events for this window
follow. If count is nonzero, then at least that many more GraphicsExposure events for this win-
dow follow (and possibly more).

82

X Protocol X11, Release 6.7 DRAFT

The x and y coordinates are relative to drawable’s origin and specify the upper-left corner of a
rectangle. The width and height specify the extent of the rectangle.

The major and minor opcodes identify the graphics request used. For the core protocol, major-
opcode is always CopyArea or CopyPlane, and minor-opcode is always zero.

NoExposure

drawable: DRAWABLE
major-opcode: CARDS
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is
generated when a graphics request that might produce GraphicsExposure events does not pro-
duce any. The drawable specifies the destination used for the graphics request.

The major and minor opcodes identify the graphics request used. For the core protocol, major-
opcode is always CopyArea or CopyPlane, and the minor-opcode is always zero.

VisibilityNotify
window: WINDOW
state: { Unobscured, PartiallyObscured, FullyObscured }

This event is reported to clients selecting VisibilityChange on the window. In the following, the
state of the window is calculated ignoring all of the window’s subwindows. When a window
changes state from partially or fully obscured or not viewable to viewable and completely unob-
scured, an event with Unobscured is generated. When a window changes state from viewable
and completely unobscured, from viewable and completely obscured, or from not viewable, to
viewable and partially obscured, an event with PartiallyObscured is generated. When a window
changes state from viewable and completely unobscured, from viewable and partially obscured,
or from not viewable to viewable and fully obscured, an event with FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated after any hierarchy event
caused by that change (for example, UnmapNotify, MapNotify, ConfigureNotify, GravityNo-
tify, CirculateNotify). Any VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that all VisibilityNotify events on all win-
dows be generated before all Expose events on all windows. The ordering of VisibilityNotify
events with respect to FocusOut, EnterNotify, and LeaveNotify events is not constrained.

CreateNotify
parent, window: WINDOW
x,y: INT16
width, height, border-width: CARD16
override-redirect: BOOL

83

X Protocol X11, Release 6.7 DRAFT

This event is reported to clients selecting SubstructureNotify on the parent and is generated
when the window is created. The arguments are as in the CreateWindow request.

DestroyNotify
event, window: WINDOW

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window is destroyed. The event is
the window on which the event was generated, and the window is the window that is destroyed.

The ordering of the DestroyNotify events is such that for any given window, DestroyNotify is
generated on all inferiors of the window before being generated on the window itself. The order-
ing among siblings and across subhierarchies is not otherwise constrained.

UnmapNotify

event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window changes state from mapped
to unmapped. The event is the window on which the event was generated, and the window is the

window that is unmapped. The from-configure flag is True if the event was generated as a result
of the window’s parent being resized when the window itself had a win-gravity of Unmap.

MapNotify

event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window changes state from
unmapped to mapped. The event is the window on which the event was generated, and the win-
dow is the window that is mapped. The override-redirect flag is from the window’s attribute.

MapRequest
parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a MapWindow request is issued on an unmapped window with an override-redirect
attribute of False.

84

X Protocol X11, Release 6.7 DRAFT

ReparentNotify

event, window, parent: WINDOW
x,y: INT16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old or the new parent
and to clients selecting StructureNotify on the window. It is generated when the window is
reparented. The event is the window on which the event was generated. The window is the win-
dow that has been rerooted. The parent specifies the new parent. The x and y coordinates are rel-
ative to the new parent’s origin and specify the position of the upper-left outer corner of the win-
dow. The override-redirect flag is from the window’s attribute.

ConfigureNotify

event, window: WINDOW

x,y: INT16

width, height, border-width: CARD16
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when a ConfigureWindow request actually
changes the state of the window. The event is the window on which the event was generated, and
the window is the window that is changed. The x and y coordinates are relative to the new par-
ent’s origin and specify the position of the upper-left outer corner of the window. The width and
height specify the inside size, not including the border. If above-sibling is None, then the win-
dow is on the bottom of the stack with respect to siblings. Otherwise, the window is immediately
on top of the specified sibling. The override-redirect flag is from the window’s attribute.

GravityNotify

event, window: WINDOW
x,y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to clients select-
ing StructureNotify on the window. It is generated when a window is moved because of a
change in size of the parent. The event is the window on which the event was generated, and the
window is the window that is moved. The x and y coordinates are relative to the new parent’s ori-
gin and specify the position of the upper-left outer corner of the window.

ResizeRequest

window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is generated
when a ConfigureWindow request by some other client on the window attempts to change the

85

X Protocol X11, Release 6.7 DRAFT

size of the window. The width and height are the requested inside size, not including the border.

ConfigureRequest

parent, window: WINDOW

x,y: INT16

width, height, border-width: CARD16

sibling: WINDOW or None

stack-mode: { Above, Below, Toplf, BottomlIf, Opposite }
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a ConfigureWindow request is issued on the window by some other client. The
value-mask indicates which components were specified in the request. The value-mask and the
corresponding values are reported as given in the request. The remaining values are filled in from
the current geometry of the window, except in the case of sibling and stack-mode, which are
reported as None and Above (respectively) if not given in the request.

CirculateNotify

event, window: WINDOW
place: { Top, Bottom }

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window is actually restacked from a
CirculateWindow request. The event is the window on which the event was generated, and the
window is the window that is restacked. If place is Top, the window is now on top of all siblings.
Otherwise, it is below all siblings.

CirculateRequest

parent, window: WINDOW
place: { Top, Bottom }

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a CirculateWindow request is issued on the parent and a window actually needs to be
restacked. The window specifies the window to be restacked, and the place specifies what the
new position in the stacking order should be.

PropertyNotify
window: WINDOW
atom: ATOM

state: { NewValue, Deleted }
time: TIMESTAMP

86

X Protocol X11, Release 6.7 DRAFT

This event is reported to clients selecting PropertyChange on the window and is generated with
state NewValue when a property of the window is changed using ChangeProperty or
RotateProperties, even when adding zero-length data using ChangeProperty and when replac-
ing all or part of a property with identical data using ChangeProperty or RotateProperties. It
is generated with state Deleted when a property of the window is deleted using request
DeleteProperty or GetProperty. The timestamp indicates the server time when the property
was changed.

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a new owner is
being defined by means of SetSelectionOwner. The timestamp is the last-change time recorded
for the selection. The owner argument is the window that was specified by the current owner in
its SetSelectionOwner request.

SelectionRequest

owner: WINDOW

selection: ATOM

target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client issues a Convert-
Selection request. The owner argument is the window that was specified in the SetSelec-
tionOwner request. The remaining arguments are as in the ConvertSelection request.

The owner should convert the selection based on the specified target type and send a Selection-
Notify back to the requestor. A complete specification for using selections is given in the X.Org
standard Inter-Client Communication Conventions Manual.

SelectionNotify

requestor: WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request when there is no
owner for the selection. When there is an owner, it should be generated by the owner using
SendEvent. The owner of a selection should send this event to a requestor either when a selec-
tion has been converted and stored as a property or when a selection conversion could not be per-
formed (indicated with property None).

87

X Protocol X11, Release 6.7 DRAFT

ColormapNotify

window: WINDOW

colormap: COLORMAP or None
new: BOOL

state: { Installed, Uninstalled }

This event is reported to clients selecting ColormapChange on the window. It is generated with
value True for new when the colormap attribute of the window is changed and is generated with
value False for new when the colormap of a window is installed or uninstalled. In either case,
the state indicates whether the colormap is currently installed.

MappingNotify

request: { Modifier, Keyboard, Pointer }
first-keycode, count: CARDS

This event is sent to all clients. There is no mechanism to express disinterest in this event. The
detail indicates the kind of change that occurred: Modifiers for a successful SetModifierMap-
ping, Keyboard for a successful ChangeKeyboardMapping, and Pointer for a successful Set-
PointerMapping. If the detail is Keyboard, then first-keycode and count indicate the range of
altered keycodes.

ClientMessage

window: WINDOW

type: ATOM

format: {8, 16, 32}

data: LISTofINTS or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent. The type specifies how the data is to be
interpreted by the receiving client; the server places no interpretation on the type or the data. The
format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities,
so that the server can correctly byte-swap, as necessary. The data always consists of either 20
8-bit values or 10 16-bit values or 5 32-bit values, although particular message types might not
make use of all of these values.

12. Flow Control and Concurrency

Whenever the server is writing to a given connection, it is permissible for the server to stop read-
ing from that connection (but if the writing would block, it must continue to service other connec-
tions). The server is not required to buffer more than a single request per connection at one time.
For a given connection to the server, a client can block while reading from the connection but
should undertake to read (events and errors) when writing would block. Failure on the part of a
client to obey this rule could result in a deadlocked connection, although deadlock is probably
unlikely unless either the transport layer has very little buffering or the client attempts to send
large numbers of requests without ever reading replies or checking for errors and events.

Whether or not a server is implemented with internal concurrency, the overall effect must be as if
individual requests are executed to completion in some serial order, and requests from a given

88

X Protocol X11, Release 6.7 DRAFT

connection must be executed in delivery order (that is, the total execution order is a shuffle of the
individual streams). The execution of a request includes validating all arguments, collecting all
data for any reply, and generating and queueing all required events. However, it does not include
the actual transmission of the reply and the events. In addition, the effect of any other cause that
can generate multiple events (for example, activation of a grab or pointer motion) must effectively
generate and queue all required events indivisibly with respect to all other causes and requests.
For a request from a given client, any events destined for that client that are caused by executing
the request must be sent to the client before any reply or error is sent.

89

X Protocol X11, Release 6.7 DRAFT

Appendix A

KEYSYM Encoding

For convenience, KEYSYM values are viewed as split into four bytes:

. Byte 1 (for the purposes of this encoding) is the most-significant 5 bits (because of the
29-bit effective values)

. Byte 2 is the next most-significant 8 bits
. Byte 3 is the next most-significant 8 bits
. Byte 4 is the least-significant 8 bits

There are two special KEYSYM values: NoSymbol and VoidSymbol. They are used to indicate
the absence of symbols (see section 5).

Bytel Byte2 Byte3 Byte4d Name

0 0 0 0 NoSymbol
0 255 255 255 VoidSymbol

All other standard KEYSYM values have zero values for bytes 1 and 2. Byte 3 indicates a char-
acter code set, and byte 4 indicates a particular character within that set.

Byte3 Byted

0 Latin-1

1 Latin-2

2 Latin-3
3 Latin-4
4 Kana

5 Arabic

6 Cyrillic

7 Greek

8 Technical
9 Special
10 Publishing
11 APL

12 Hebrew
13 Thai

14 Korean
15 Latin-5
16 Latin-6
17 Latin-7
18 Latin-8
19 Latin-9
32 Currency

90

X Protocol X11, Release 6.7 DRAFT

253 3270
254 Keyboard (XKB) Extension
255 Keyboard

Each character set contains gaps where codes have been removed that were duplicates with codes
in previous character sets (that is, character sets with lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right-hand quadrant (decimal
129 through 256), so the ASCII subset has a unique encoding across byte 4, which corresponds to
the ASCII character code. However, this cannot be guaranteed with future registrations and does
not apply to all of the Keyboard set.

To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek, APL, and Hebrew sets are
from the appropriate ISO and/or ECMA international standards. There are no Technical, Special,
or Publishing international standards, so these sets are based on Digital Equipment Corporation
standards.

The ordering between the sets (byte 3) is essentially arbitrary. National and international stan-
dards bodies were commencing deliberations regarding international 2-byte and 4-byte character
sets at the time these keysyms were developed, but we did not know of any proposed layouts.

The order may be arbitrary, but it is important in dealing with duplicate coding. As far as possi-
ble, keysym values (byte 4) follow the character set encoding standards, except for the Greek and
Cyrillic keysyms which are based on early draft standards. In the Latin-1 to Latin-4 sets, all
duplicate glyphs occupy the same code position. However, duplicates between Greek and Techni-
cal do not occupy the same code position. Applications that wish to use the Latin-2, Latin-3,
Latin-4, Greek, Cyrillic, or Technical sets may find it convenient to use arrays to transform the
keysyms.

There is a difference between European and US usage of the names Pilcrow, Paragraph, and Sec-
tion, as follows:

US name European name code position in Latin-1

Section sign Paragraph sign 10/07
Paragraph sign Pilcrow sign 11/06

We have adopted the US names (by accident rather than by design).

The Keyboard set is a miscellaneous collection of commonly occurring keys on keyboards.
Within this set, the keypad symbols are generally duplicates of symbols found on keys on the
main part of the keyboard, but they are distinguished here because they often have a distinguish-
able semantics associated with them.

Keyboards tend to be comparatively standard with respect to the alphanumeric keys, but they dif-
fer radically on the miscellaneous function keys. Many function keys are left over from early
timesharing days or are designed for a specific application. Keyboard layouts from large manu-
facturers tend to have lots of keys for every conceivable purpose, whereas small workstation man-
ufacturers often add keys that are solely for support of some of their unique functionality. There
are two ways of thinking about how to define keysyms for such a world:

. The Engraving approach
. The Common approach

The Engraving approach is to create a keysym for every unique key engraving. This is effectively
taking the union of all key engravings on all keyboards. For example, some keyboards label

91

X Protocol X11, Release 6.7 DRAFT

function keys across the top as F1 through Fn, and others label them as PF1 through PFn. These
would be different keys under the Engraving approach. Likewise, Lock would differ from Shift
Lock, which is different from the up-arrow symbol that has the effect of changing lowercase to
uppercase. There are lots of other aliases such as Del, DEL, Delete, Remove, and so forth. The
Engraving approach makes it easy to decide if a new entry should be added to the keysym set: if
it does not exactly match an existing one, then a new one is created. One estimate is that there
would be on the order of 300-500 Keyboard keysyms using this approach, without counting for-
eign translations and variations.

The Common approach tries to capture all of the keys present on an interesting number of
keyboards, folding likely aliases into the same keysym. For example, Del, DEL, and Delete are
all merged into a single keysym. Vendors would be expected to augment the keysym set (using
the vendor-specific encoding space) to include all of their unique keys that were not included in
the standard set. Each vendor decides which of its keys map into the standard keysyms, which
presumably can be overridden by a user. It is more difficult to implement this approach, because
judgment is required about when a sufficient set of keyboards implements an engraving to justify
making it a keysym in the standard set and about which engravings should be merged into a sin-
gle keysym. Under this scheme there are an estimated 100—150 keysyms.

Although neither scheme is perfect or elegant, the Common approach has been selected because it
makes it easier to write a portable application. Having the Delete functionality merged into a sin-
gle keysym allows an application to implement a deletion function and expect reasonable bind-
ings on a wide set of workstations. Under the Common approach, application writers are still free
to look for and interpret vendor-specific keysyms, but because they are in the extended set, the
application developer is more conscious that they are writing the application in a nonportable
fashion.

In the listings below, Code Pos is a representation of byte 4 of the KEYSYM value, expressed as
most-significant/least-significant 4-bit values. The Code Pos numbers are for reference only and
do not affect the KEYSYM value. In all cases, the KEYSYM value is:

byte3 * 256 + byte4

Byte Byte Code Name Set

3 4 Pos

000 032 02/00 SPACE Latin-1
000 033 02/01 EXCLAMATION POINT Latin-1
000 034 02/02 QUOTATION MARK Latin-1
000 035 02/03 NUMBER SIGN Latin-1
000 036 02/04 DOLLAR SIGN Latin-1
000 037 02/05 PERCENT SIGN Latin-1
000 038 02/06 AMPERSAND Latin-1
000 039 02/07 APOSTROPHE Latin-1
000 040 02/08 LEFT PARENTHESIS Latin-1
000 041 02/09 RIGHT PARENTHESIS Latin-1
000 042 02/10 ASTERISK Latin-1
000 043 02/11 PLUS SIGN Latin-1
000 044 02/12 COMMA Latin-1
000 045 02/13 MINUS SIGN Latin-1
000 046 02/14 FULL STOP Latin-1
000 047 02/15 SOLIDUS Latin-1
000 048 03/00 DIGIT ZERO Latin-1
000 049 03/01 DIGIT ONE Latin-1
000 050 03/02 DIGIT TWO Latin-1
000 051 03/03 DIGIT THREE Latin-1

92

X Protocol

X11, Release 6.7 DRAFT

Byte Byte Code Name Set

3 4 Pos

000 052 03/04 DIGIT FOUR Latin-1
000 053 03/05 DIGIT FIVE Latin-1
000 054 03/06 DIGIT SIX Latin-1
000 055 03/07 DIGIT SEVEN Latin-1
000 056 03/08 DIGIT EIGHT Latin-1
000 057 03/09 DIGIT NINE Latin-1
000 058 03/10 COLON Latin-1
000 059 03/11 SEMICOLON Latin-1
000 060 03/12 LESS THAN SIGN Latin-1
000 061 03/13 EQUALS SIGN Latin-1
000 062 03/14 GREATER THAN SIGN Latin-1
000 063 03/15 QUESTION MARK Latin-1
000 064 04/00 COMMERCIAL AT Latin-1
000 065 04/01 LATIN CAPITAL LETTER A Latin-1
000 066 04/02 LATIN CAPITAL LETTER B Latin-1
000 067 04/03 LATIN CAPITAL LETTER C Latin-1
000 068 04/04 LATIN CAPITAL LETTER D Latin-1
000 069 04/05 LATIN CAPITAL LETTER E Latin-1
000 070 04/06 LATIN CAPITAL LETTER F Latin-1
000 071 04/07 LATIN CAPITAL LETTER G Latin-1
000 072 04/08 LATIN CAPITAL LETTER H Latin-1
000 073 04/09 LATIN CAPITAL LETTER 1 Latin-1
000 074 04/10 LATIN CAPITAL LETTER J Latin-1
000 075 04/11 LATIN CAPITAL LETTER K Latin-1
000 076 04/12 LATIN CAPITAL LETTER L Latin-1
000 077 04/13 LATIN CAPITAL LETTER M Latin-1
000 078 04/14 LATIN CAPITAL LETTER N Latin-1
000 079 04/15 LATIN CAPITAL LETTER O Latin-1
000 080 05/00 LATIN CAPITAL LETTER P Latin-1
000 081 05/01 LATIN CAPITAL LETTER Q Latin-1
000 082 05/02 LATIN CAPITAL LETTER R Latin-1
000 083 05/03 LATIN CAPITAL LETTER S Latin-1
000 084 05/04 LATIN CAPITAL LETTER T Latin-1
000 085 05/05 LATIN CAPITAL LETTER U Latin-1
000 086 05/06 LATIN CAPITAL LETTER V Latin-1
000 087 05/07 LATIN CAPITAL LETTER W Latin-1
000 088 05/08 LATIN CAPITAL LETTER X Latin-1
000 089 05/09 LATIN CAPITAL LETTER Y Latin-1
000 090 05/10 LATIN CAPITAL LETTER Z Latin-1
000 091 05/11 LEFT SQUARE BRACKET Latin-1
000 092 05/12 REVERSE SOLIDUS Latin-1
000 093 05/13 RIGHT SQUARE BRACKET Latin-1
000 094 05/14 CIRCUMFLEX ACCENT Latin-1
000 095 05/15 LOW LINE Latin-1
000 096 06/00 GRAVE ACCENT Latin-1
000 097 06/01 LATIN SMALL LETTER a Latin-1
000 098 06/02 LATIN SMALL LETTER b Latin-1
000 099 06/03 LATIN SMALL LETTER ¢ Latin-1
000 100 06/04 LATIN SMALL LETTER d Latin-1
000 101 06/05 LATIN SMALL LETTER e Latin-1
000 102 06/06 LATIN SMALL LETTER f Latin-1
000 103 06/07 LATIN SMALL LETTER g Latin-1
000 104 06/08 LATIN SMALL LETTER h Latin-1
000 105 06/09 LATIN SMALL LETTER i Latin-1
000 106 06/10 LATIN SMALL LETTER j Latin-1
000 107 06/11 LATIN SMALL LETTER k Latin-1
000 108 06/12 LATIN SMALL LETTER 1 Latin-1
000 109 06/13 LATIN SMALL LETTER m Latin-1
000 110 06/14 LATIN SMALL LETTER n Latin-1
000 111 06/15 LATIN SMALL LETTER o Latin-1

93

X Protocol X11, Release 6.7 DRAFT

Byte Byte Code Name Set

3 4 Pos

000 112 07/00 LATIN SMALL LETTER p Latin-1
000 113 07/01 LATIN SMALL LETTER q Latin-1
000 114 07/02 LATIN SMALL LETTER r Latin-1
000 115 07/03 LATIN SMALL LETTER s Latin-1
000 116 07/04 LATIN SMALL LETTER t Latin-1
000 117 07/05 LATIN SMALL LETTER u Latin-1
000 118 07/06 LATIN SMALL LETTER v Latin-1
000 119 07/07 LATIN SMALL LETTER w Latin-1
000 120 07/08 LATIN SMALL LETTER x Latin-1
000 121 07/09 LATIN SMALL LETTER y Latin-1
000 122 07/10 LATIN SMALL LETTER z Latin-1
000 123 07/11 LEFT CURLY BRACKET Latin-1
000 124 07/12 VERTICAL LINE Latin-1
000 125 07/13 RIGHT CURLY BRACKET Latin-1
000 126 07/14 TILDE Latin-1
000 160 10/00 NO-BREAK SPACE Latin-1
000 161 10/01 INVERTED EXCLAMATION MARK Latin-1
000 162 10/02 CENT SIGN Latin-1
000 163 10/03 POUND SIGN Latin-1
000 164 10/04 CURRENCY SIGN Latin-1
000 165 10/05 YEN SIGN Latin-1
000 166 10/06 BROKEN VERTICAL BAR Latin-1
000 167 10/07 SECTION SIGN Latin-1
000 168 10/08 DIAERESIS Latin-1
000 169 10/09 COPYRIGHT SIGN Latin-1
000 170 10/10 FEMININE ORDINAL INDICATOR Latin-1
000 171 10/11 LEFT ANGLE QUOTATION MARK Latin-1
000 172 10/12 NOT SIGN Latin-1
000 173 10/13 HYPHEN Latin-1
000 174 10/14 REGISTERED TRADEMARK SIGN Latin-1
000 175 10/15 MACRON Latin-1
000 176 11/00 DEGREE S