Net wor k Wor ki ng Group S. Shepl er
Request for Comments: 3010 B. Cal | aghan
(bsol etes: 1813, 1094 D. Robi nson
Cat egory: Standards Track R Thurl ow
Sun M crosystens |nc.

C. Beane

Hurmi ngbi rd Ltd.

M Eisler

Zambeel , Inc.

D. Noveck

Net wor k Appliance, Inc.

Decenber 2000

NFS version 4 Protoco

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2000). Al Rights Reserved.

Abst r act

NFS (Network File System) version 4 is a distributed file system

prot ocol which owes heritage to NFS protocol versions 2 [RFC1094] and
3 [RFC1813]. Unlike earlier versions, the NFS version 4 protoco
supports traditional file access while integrating support for file

| ocki ng and the nount protocol. In addition, support for strong
security (and its negotiation), conpound operations, client caching,
and internationalization have been added. O course, attention has
been applied to making NFS version 4 operate well in an Internet

envi ronnent .

Key Words
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119.

Shepler, et al. St andards Track [Page 1]

RFC 3010

NFS version 4 Protocol

Tabl e of Contents

NERPRPRRRERRERE

PLOWWWNNNNNE

oo bbbbbbbbbhLUOOOWLWWWWWWWONNNRERRRRRPRRRRRE
WNNNNNE PP

CoNourwWNE

I nt roduction .

UbLWWLWwLNE

Overvi ew of NFS Ver si on 4 Featur es .
RPC and Security . .
Procedure and Qperati on Structure
File System Model .
1. Filehandl e Types .
2. Attribute Types
3. File System Replication and M gr atl on
OPEN and CLCSE .
File locking . .
dient Caching and DeI egatr on
Ceneral Definitions .

Prot ocol Data Types

Basi ¢ Data Types .
Structured Data Types

RPC and Security Flavor

s

N

Ports and Transports .

Security Flavors . . e e e
Security nechani sns for NFS version 4
Kerberos V5 as security triple .

LI PKEY as a security triple

1.
2.
.3. SPKM 3 asasecurrtytrrple
S .

ecurity Negotiation .
Security Error
SECI NFO

. Cal | back RPC Aut hentl catl on

Ei

N

PP

o

Shepl er,

| ehandl es - .
bt ai ning the Frrst Frlehandle
Root Fil ehandl e .o
Public Fil ehandl e
Fi | ehandl e Types
CGeneral Properties of a Fllehandle
Persi stent Fil ehandl e
Vol atil e Fil ehandl e

One Met hod of Constructi ng a VoI atr I e F| I ehandl e .
Client Recovery from Fil ehandl e Expiration . .
ile Attributes

Mandatory Attributes .

Recommended Attributes .

Nanmed Attri butes . e e
Mandatory Attributes - Definitions . .
Recomended Attributes - Definitions .
Interpreting owner and owner_group .
Character Case Attributes

Quota Attributes .

Access Control Lists .

et al. St andards Track

Decenber 2000

©OOOWWw~NOO U

AWWWWWWWWRNRNRNNNNRNNNNNNNVNNNNRRRRRRRRRRE
COOOWRROOWMNOWOOUIURRRNWNRPPRPPRPOWOOOO®O®ONNNERO

[Page 2]

RFC 3010 NFS version 4 Protocol Decenber 2000

5.9.1. ACEtypeo
5.9.2. ACE flag < X
5.9.3. ACE Access Nhsk X
5.9.4. ACE who . . .
6. File System M gratlon and Repllcatlon P/
6.1. Replication 45
6.2. Mgration 45
6.3. Interpretation of the fs Iocatlons Attrlbute 46
6.4. Filehandl e Recovery for M gration or Replication 47
7. NFS Server Nanme Space 47
7.1. Server Exports L 4AT
7.2. Browsing Exports . . . Y 12
7.3. Server Pseudo File System e e e . e 48
7.4. Miltiple Roots . . . Y £]
7.5. Filehandl e Vblatlllty Y 1]
7.6. Exported Root ... 49
7.7. Munt Point Crossing . . e 49
7.8. Security Policy and Name Space Presentatlon B0
8. File Locking and Share Reservations 50
8.1. Locking B
8.1.1. dCient ID . . Y A
8.1.2. Server Release of G |ent|d S . .« 53
8.1.3. nfs_lockowner and stateid Def|n|t|on b4
8.1.4. Use of the stateid+ b5
8.1.5. Sequencing of Lock Requests . e 656
8.1.6. Recovery from Repl ayed Requests 56
8.1.7. Releasing nfs_| ockowner State 57
8.2. Lock Ranges .. b7
8.3. Blocking Locks . 58
8.4, Lease Renewal 58
8.5. Crash Recovery . . e e e b9
8.5.1. dient Failure and Recovery T 1°
8.5.2. Server Failure and Recovery 60
8.5.3. Network Partitions and Recovery . . N ¢ 2
8.6. Recovery froma Lock Request Tinmeout or Abort 63
8.7. Server Revocation of Locks 63
8.8. Share Reservations 65
8.9. OPEN CLOCSE Operations . . . e 65
8.10. Open Upgrade and Downgrade 66
8.11. Short and Long Leases 66
8.12. (Cocks and Cal cul ating Lease Explratlon e o ¥ £
8.13. Mgration, Replication and State 67
8.13.1. Mgration and State 67
8.13.2. Replication and State e o« 08
8.13.3. Notification of Mgrated Lease e o 1°)
9. dient-Side Caching 869
9.1. Performance Chall enges for G |ent Slde Cachlng 70
9.2. Delegation and Callbacks 171

Shepler, et al. St andards Track [Page 3]

RFC 3010

LOOLOLOLOLOLOLOLOLOLLOLLOLOOO
NoUUARRLADLOLWWWWN

[
e e
agRrwNE

[
w
PONE

[
N
NN

[
N
SESISERESESESEINEN

Shepl er,

=

PP

PR

=

.14. QOperation 16:

NFS version 4 Protocol

Del egati on Recovery
Data Caching
Dat a Cachi ng and (PENs .o
Data Caching and File Locki ng .
Data Caching and Mandatory File LOCkI ng
Data Caching and File ldentity .
Open Del egati on .
Open Del egati on and Data Cachl ng .
Open Del egation and File Locks .
Recall of Open Del egation
Del egati on Revocati on
Dat a Cachi ng and Revocation

Attribute Caching
Name Caching . .
Directory Caching
M nor Ver si oni ng
I nternationalization .
Uni ver sal Versus Local Char act er Set s .

Overvi ew of Universal Character Set St andards .

Difficulties with UCS-4, UCS-2, Unicode .
UTF-8 and its solutions .
Nor mal i zati on .
Error Definitions .
NFS Version 4 Requests
Compound Procedure . .
Eval uati on of a Conpound Request
Synchr onous Mdi fyi ng Cper ations
Oper ati on Val ues .
NFS Version 4 Procedures . .
Procedure 0: NULL - No Operatlon . .
Procedure 1: COVPOUND - Conpound Operatl ons .

Revocation Recovery for Wite Open DeI egatl on

Decenber 2000

72
74
74
75
77
77
78
80
82
82
84
84
85
85
86
87
88
91
91
92
93
94
94
95
99
100
100
101
102
102
102
102
105
108
109

114

1. Operation 3: ACCESS - Check Access Rights .

2. Operation 4. CLOSE - Close File . . .

3. Operation 5: COWMT - Commit Cached Data G

4., Qperation 6: CREATE - Create a Non-Regular File Object. 112

5. Operation 7: DELEGPURGE - Purge Del egations Awaiting
Recovery .

6 Operation 8:
7. Operation 9: GETATTR - Get Attributes . .

8. Operation 10: GETFH - Get Current Fil ehandl e
9. Operation 11: LINK - Create Link to a File

10. Operation 12:
11. Operation 13:
12. Operation 14:
13. Operation 15:

LOCK - Create Lock .
LOCKT - Test For Lock
LOCKU - Unlock File . . .
LOOKUP - Lookup Fil enane .

et al. St andards Track

DELEGRETURN - Return Del egation

LOOKUPP - Lookup Parent Di réct ory

115
115
117
118
119
121
122
123
126

[Page 4]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.15. Operation 17: NVERIFY - Verify Difference in

Attributes 12y
14.2.16. COperation 18: OPEN - Open a Regular File 128
14.2.17. Operation 19: OPENATTR - Cpen Named Attribute

Directory o.o137
14.2.18. Operation 20: CPEN CCNFIRM Conflrn1cpen .o 138
14.2.19. Operation 21: OPEN DOWNGRADE - Reduce Open File Access 140
14.2.20. COperation 22: PUTFH - Set Current Filehandle 141
14.2.21. COperation 23: PUTPUBFH - Set Public Filehandle 142
14.2.22. (Operation 24: PUTROOTFH - Set Root Filehandle 143
14.2.23. Operation 25: READ - Read fromFile 144
14.2.24. Operation 26: READDIR - Read Directory 1l4e
14.2.25. Operation 27: READLINK - Read Synbolic L|nk 150
14.2.26. Operation 28: REMOVE - Renove Filesystem Gbject . . . 151
14.2.27. Operation 29: RENAME - Renane Directory Entry 153
14.2.28. (Operation 30: RENEW- Renew a Lease 155
14.2.29. Operation 31: RESTOREFH - Restore Saved Fllehandle . . 156
14.2.30. Operation 32: SAVEFH - Save Current Filehandle 157
14.2.31. Operation 33: SECINFO - Ootain Avail able Securlty . . 158
14.2.32. Operation 34: SETATTR - Set Attributes 160
14.2.33. Operation 35: SETCLIENTID - Negotiate C |ent|d 162
14.2.34. Operation 36: SETCLIENTID CONFIRM - ConfirmdCientid . 163
14.2.35. Operation 37: VERIFY - Verify Same Attributes 164
14.2.36. Operation 38: WRITE - Wite to File 166
15. NFS Version 4 Call back Procedures 170
15.1. Procedure 0: CB_NULL - No OQperation 170
15.2. Procedure 1: CB_COVWOUND - Conpound Cperatlons T i
15.2.1. QOperation 3: CB GETATTR - Get Attributes 172
15.2.2. Operation 4: CB RECALL - Recall an Cpen Delegatlon .. 173
16. Security Considerations 174
17. | ANA Considerations . . . ey g
17.1. Named Attribute Deflnltlon e g}
18. RPC definition file . 175
19. Bibliography . 206
20. Authors . . - 0
20.1. Editor’'s Address 4 K O
20.2. Authors’ Addresses 210
20.3. Acknow edgenents 211
21. Full Copyright Statement 212

1. Introduction

The NFS version 4 protocol is a further revision of the NFS protoco
defined already by versions 2 [RFC1094] and 3 [RFC1813]. It retains
the essential characteristics of previous versions: design for easy
recovery, independent of transport protocols, operating systems and
filesystenms, sinplicity, and good performance. The NFS version 4
revision has the foll owi ng goal s:

Shepler, et al. St andards Track [Page 5]

RFC 3010 NFS version 4 Protocol Decenber 2000

o |Inproved access and good performance on the |nternet.

The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is |low, and scale to very
| arge numbers of clients per server

0 Strong security with negotiation built into the protocol

The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC GSS protocol. Additionally, the NFS version
4 protocol provides a nmechanismto allow clients and servers the
ability to negotiate security and require clients and servers to
support a mininmal set of security schenes.

0 Good cross-platforminteroperability.

The protocol features a file system nodel that provides a useful
common set of features that does not unduly favor one file system
or operating system over another

0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conpromn se backward conpatibility.

1.1. Overview of NFS Version 4 Features

To provide a reasonable context for the reader, the major features of
NFS version 4 protocol will be reviewed in brief. This will be done
to provide an appropriate context for both the reader who is fanmiliar
with the previous versions of the NFS protocol and the reader that is
new to the NFS protocols. For the reader new to the NFS protocols,
there is still a fundanental know edge that is expected. The reader
should be fanmiliar with the XDR and RPC protocols as described in

[RFC1831] and [RFC1832]. A basic know edge of file systens and
distributed file systens is expected as well.

1.1.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Renote Procedure Call (RPC) mechanisns used for the NFS
version 4 protocol are those defined in [RFC1831] and [RFC1832]. To
meet end to end security requirenents, the RPCSEC GSS franework

[RFC2203] will be used to extend the basic RPC security. Wth the
use of RPCSEC_GSS, various nechani sns can be provided to offer

aut hentication, integrity, and privacy to the NFS version 4 protocol
Kerberos V5 will be used as described in [RFC1964] to provide one
security framework. The LIPKEY GSS- APl nechani sm described in

Shepler, et al. St andards Track [Page 6]

RFC 3010 NFS version 4 Protocol Decenber 2000

[RFC2847] will be used to provide for the use of user password and
server public key by the NFS version 4 protocol. Wth the use of
RPCSEC _GSS, ot her nechani sns nay al so be specified and used for NFS
version 4 security.

To enabl e in-band security negotiation, the NFS version 4 protoco
has added a new operation which provides the client a nethod of
qgquerying the server about its policies regardi ng which security
nmechani snms nust be used for access to the server’s file system
resources. Wth this, the client can securely match the security
mechani smthat neets the policies specified at both the client and
server.

1.1.2. Procedure and Operation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COWOUND procedure. For the NFS
version 4 protocol, there are two RPC procedures, NULL and COVPOUND
The COVPOUND procedure is defined in terns of operations and these
operations correspond nore closely to the traditional NFS procedures.
Wth the use of the COVWPOUND procedure, the client is able to build
sinmple or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical file system
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVPOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COWOUND is very sinple. There is no logical OR
or ANDi ng of operations. The operations conbined within a COVMPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFS version 4 protocol continues to have the client refer to a
file or directory at the server by a "filehandl e". The COVPOUND
procedure has a nmethod of passing a filehandle fromone operation to
anot her within the sequence of operations. There is a concept of a
"current filehandle" and "saved fil ehandl e". Moyst operations use the
"current filehandle" as the file system object to operate upon. The
"saved filehandle" is used as tenporary filehandl e storage within a
COVMPOUND procedure as well as an additional operand for certain
operations.

Shepler, et al. St andards Track [Page 7]

RFC 3010 NFS version 4 Protocol Decenber 2000

1.1.3. File System Mdel

The general file system nodel used for the NFS version 4 protocol is
the sane as previous versions. The server file systemis
hierarchical with the regular files contained within being treated as
opaque byte streans. In a slight departure, file and directory nanes
are encoded with UTF-8 to deal with the basics of

i nternationalization

The NFS version 4 protocol does not require a separate protocol to
provide for the initial mapping between path nanme and fil ehandl e.

I nstead of using the ol der MOUNT protocol for this nmapping, the
server provides a ROOT filehandl e that represents the |ogical root or
top of the file systemtree provided by the server. The server
provides multiple file systens by gluing themtogether wth pseudo
file systems. These pseudo file systens provide for potential gaps
in the path nanes between real file systens.

1.1.3.1. Filehandle Types

In previous versions of the NFS protocol, the fil ehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine
of the file systemobject to which it referred. For sonme server

i npl enentations, this persistence requirenent has been difficult to
nmeet. For the NFS version 4 protocol, this requirenment has been

rel axed by introduci ng another type of filehandle, volatile. Wth
persistent and volatile filehandl e types, the server inplenentation
can match the abilities of the file systemat the server along with
the operating environnent. The client will have know edge of the
type of filehandl e being provided by the server and can be prepared
to deal with the semantics of each

1.1.3.2. Attribute Types

The NFS version 4 protocol introduces three classes of file systemor
file attributes. Like the additional filehandle type, the
classification of file attributes has been done to ease server

i mpl enentations along with extending the overall functionality of the
NFS protocol. This attribute nodel is structured to be extensible
such that new attributes can be introduced in mnor revisions of the
protocol without requiring significant rework.

The three classifications are: mandatory, recommended and naned
attributes. This is a significant departure fromthe previous

attribute nmodel used in the NFS protocol. Previously, the attributes
for the file systemand file objects were a fixed set of mainly Unix
attributes. |If the server or client did not support a particular

attribute, it would have to sinulate the attribute the best it coul d.

Shepler, et al. St andards Track [Page 8]

RFC 3010 NFS version 4 Protocol Decenber 2000

Mandatory attributes are the mnimal set of file or file system
attributes that nust be provided by the server and nust be properly
represented by the server. Reconmended attributes represent
different file systemtypes and operating environnents. The
recommended attributes will allow for better interoperability and the
i nclusion of nore operating environnents. The nmandatory and
recomended attribute sets are traditional file or file system
attributes. The third type of attribute is the named attribute. A
naned attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associ ate
application specific data with a regular file or directory.

One significant addition to the recommended set of file attributes is
the Access Control List (ACL) attribute. This attribute provides for
directory and file access control beyond the nodel used in previous
versions of the NFS protocol. The ACL definition allows for
specification of user and group | evel access control

1.1.3.3. File System Replication and Mgration

Wth the use of a special file attribute, the ability to migrate or
replicate server file systens is enabled within the protocol. The
file systemlocations attribute provides a nethod for the client to
probe the server about the location of a file system In the event

of a migration of a file system the client will receive an error
when operating on the file systemand it can then query as to the new
file systemlocation. Simlar steps are used for replication, the
client is able to query the server for the nultiple available

| ocations of a particular file system Fromthis information, the
client can use its own policies to access the appropriate file system
| ocati on.

1.1.4. OPEN and CLCSE

The NFS version 4 protocol introduces OPEN and CLOSE operations. The
OPEN operation provides a single point where file | ookup, creation,
and share senantics can be conbi ned. The CLOSE operation al so
provides for the rel ease of state accunmul ated by OPEN

1.1.5. File I ocking

Wth the NFS version 4 protocol, the support for byte range file
locking is part of the NFS protocol. The file |ocking support is
structured so that an RPC cal | back nmechanismis not required. This
is a departure fromthe previous versions of the NFS file | ocking
protocol, Network Lock Manager (NLM. The state associated with file
| ocks is maintained at the server under a |ease-based nodel. The

Shepler, et al. St andards Track [Page 9]

RFC 3010 NFS version 4 Protocol Decenber 2000

server defines a single |lease period for all state held by a NFS
client. |If the client does not renewits |ease within the defined
period, all state associated with the client’s |ease may be rel eased
by the server. The client may renew its | ease with use of the RENEW
operation or inplicitly by use of other operations (primarily READ)

1.1.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFS version 4
protocol is simlar to previous versions. Attributes and directory
i nformati on are cached for a duration determined by the client. At
the end of a predefined tinmeout, the client will query the server to
see if the related file system object has been updat ed.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to determine if the file has
been changed. Based on this information, the client determnes if
the data cache for the file should kept or released. Al so, when the
file is closed, any nodified data is witten to the server

If an application wants to serialize access to file data, file
I ocking of the file data ranges in question should be used.

The major addition to NFS version 4 in the area of caching is the
ability of the server to delegate certain responsibilities to the
client. Wien the server grants a delegation for a file to a client,
the client is guaranteed certain semantics with respect to the
sharing of that file with other clients. At OPEN, the server may
provide the client either a read or wite delegation for the file.
If the client is granted a read delegation, it is assured that no
other client has the ability to wite to the file for the duration of
the delegation. |If the client is granted a wite del egation, the
client is assured that no other client has read or wite access to
the file.

Del egations can be recalled by the server. |[|f another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egations can not be granted. The essence of a

del egation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, WRI TE wi t hout i nmmedi ate
interaction with the server

Shepler, et al. St andards Track [Page 10]

RFC 3010

1.2. Genera

NFS version 4 Protocol Decenber 2000

Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader.

dient

Cientid

Lease

Lock

Server

The "client" is the entity that accesses the NFS server’s
resources. The client nay be an application which contains
the logic to access the NFS server directly. The client
may al so be the traditional operating systemclient renote
file systemservices for a set of applications.

In the case of file locking the client is the entity that
mai ntains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or
failure recovery for those locks it nanages.

Note that nultiple clients may share the sanme transport and
multiple clients may exist on the sane network node.

A 64-bit quantity used as a unique, short-hand reference to
a client supplied Verifier and ID. The server is
responsi ble for supplying the dientid.

An interval of time defined by the server for which the
client is irrevocably granted a lock. At the end of a

| ease period the lock may be revoked if the | ease has not
been extended. The lock nust be revoked if a conflicting
| ock has been granted after the |ease interval

Al'l | eases granted by a server have the sane fixed
interval. Note that the fixed interval was chosen to

all eviate the expense a server would have in naintaining
state about variable length | eases across server failures.

The term "l ock™ is used to refer to both record (byte-
range) locks as well as file (share) |ocks unless
specifically stated otherw se.

The "Server" is the entity responsible for coordinating
client access to a set of file systens.

Stabl e Storage

NFS version 4 servers nust be able to recover w thout data
loss frommultiple power failures (including cascading
power failures, that is, several power failures in quick
succession), operating systemfailures, and hardware
failure of conponents other than the storage nediumitself
(for exanple, disk, nonvolatile RAM.

Shepler, et al. St andards Track [Page 11]

RFC 3010

Stateid

Verifier

2. Pr ot ocol

NFS version 4 Protocol Decenber 2000

Sonme exanpl es of stable storage that are allowable for an
NFS server include:

1. Media commit of data, that is, the nodified data has
been successfully witten to the di sk nedia, for
exanpl e, the disk platter

2. An inmediate reply disk drive with battery-backed on-
drive intermedi ate storage or uninterruptible power
system (UPS)

3. Server conmit of data with battery-backed internediate
storage and recovery software.

4. Cache conmit with uninterruptible power system (UPS) and
recovery software

A 64-bit quantity returned by a server that uniquely
defines the locking state granted by the server for a
specific lock owner for a specific file.

Statei ds conposed of all bits O or all bits 1 have specia
meani ng and are reserved val ues.

A 64-bit quantity generated by the client that the server
can use to determine if the client has restarted and | ost
all previous |ock state.

Data Types

The syntax and semantics to describe the data types of the NFS

version 4

docunent s.

types and

protocol are defined in the XDR [RFC1832] and RPC [RFC1831]
The next sections build upon the XDR data types to define
structures specific to this protocol.

2.1. Basic Data Types

Data Type Definition

int32_t typedef int int32_t;
uint32_t t ypedef unsigned int uint32 t;
int64 t t ypedef hyper int64 t;
ui nt 64_t typedef unsigned hyper uint64_t;

Shepler, et al. St andards Track [Page 12]

RFC 3010 NFS version 4 Protocol Decenber 2000
attrlist4 t ypedef opaque attrlistd<>;
Used for file/directory attributes

bi t map4 typedef uint32_t bi t map4<>;
Used in attribute array encoding.

changei d4 t ypedef ui nt 64 _t changei d4;
Used in definition of change_info

clientid4 typedef uint64_t clientid4;
Shorthand reference to client identification

conponent 4 typedef utf8string conponent 4;
Represents path nane conponents

count 4 typedef uint32_t count 4;
Various count paraneters (READ, WRI TE, COW T)

| engt h4 typedef uint64_t | engt h4;
Descri bes LOCK | engt hs

i nkt ext4 typedef utf8string I i nkt ext 4;
Synmbolic link contents

node4 typedef uint32_t node4;
Mode attribute data type

nfs_cooki e4 typedef uint64_t nfs_cooki e4;
Opaque cooki e val ue for READDI R

nfs fha t ypedef opaque nfs_fh4<NFS4_ FHSI ZE>
Fil ehandl e definition; NFS4 FHSI ZE is defined as 128

nfs ftype4d enum nfs_ftype4,;
Various defined file types

nf sstat 4 enum nf sst at 4;
Return val ue for operations

of fset4 typedef uint64_t of f set 4;
Various offset designations (READ, WRI TE, LOCK, COWM T)

pat hnane4 t ypedef conponent 4 pat hnane4<>
Represents path name for LOOKUP, OPEN and ot hers

gop4 typedef uint32_t qop4;
Quality of protection designation in SECI NFO

Shepler, et al. St andards Track [Page 13]

RFC 3010 NFS version 4 Protocol Decenber 2000

2.

2.

sec_oi d4 t ypedef opaque sec_oi d4<>

Security Object ldentifier

The sec_oid4 data type is not really opaque.

I nstead contains an ASN. 1 OBJECT | DENTI FI ER as used
by GSS-API in the nech_type argument to

GSS Init_sec_context. See [RFC2078] for details.

seqi d4 typedef uint32_t seqi d4;

Sequence identifier used for file |ocking

Sstatei d4 typedef uint64_t st at ei d4;

State identifier used for file | ocking and del egation

utf8string t ypedef opaque utf 8stri ng<>

UTF- 8 encoding for strings

verifierd typedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;

Verifier used for various operations (COWM T, CREATE,
OPEN, READDI R, SETCLI ENTI D, WRI TE)
NFS4 VERI FI ER SI ZE is defined as 8

Structured Data Types

nf sti nme4

struct nfstinme4d {
int64_t seconds;
ui nt 32_t nseconds;

}

The nfstinmed4 structure gives the nunber of seconds and nanoseconds
since mdnight or 0 hour January 1, 1970 Coordi nated Universa

Time (UTC). Values greater than zero for the seconds field denote
dates after the 0 hour January 1, 1970. Values |less than zero for
the seconds field denote dates before the O hour January 1, 1970.
In both cases, the nseconds field is to be added to the seconds
field for the final time representation. For exanple, if the tinme
to be represented is one-half second before 0 hour January 1

1970, the seconds field would have a val ue of negative one (-1)
and the nseconds fields would have a val ue of one-half second
(500000000). Values greater than 999, 999,999 for nseconds are
consi dered invalid.

This data type is used to pass tine and date infornmation. A
server converts to and fromits |local representation of tine when
processing tinme val ues, preserving as nmuch accuracy as possible.
If the precision of tinmestanps stored for a file systemobject is

Shepler, et al. St andards Track [Page 14]

RFC 3010 NFS version 4 Protocol Decenber 2000

| ess than defined, |oss of precision can occur. An adjunct tine
mai nt enance protocol is reconmended to reduce client and server

time skew
ti me_how4
enum time_howd {
SET_TO SERVER TI ME4 = 0,
SET_TO CLIENT_TIME4 = 1
b
settime4

union settinme4 switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4:
nfsti me4 time;
def aul t:
voi d;
s

The above definitions are used as the attribute definitions to
set time values. |If set_it is SET_TO SERVER Tl ME4, then the
server uses its local representation of tine for the tine val ue.

specdat a4

struct specdatad {
uint32_t specdatal
ui nt32_t specdat az;

s

This data type represents additional information for the device
file types NFACHR and NF4BLK

fsid4
struct fsid4 {
ui nt 64_t maj or ;

ui nt 64 _t m nor ;

};

This type is the file systemidentifier that is used as a
mandatory attribute

Shepler, et al. St andards Track [Page 15]

RFC 3010 NFS version 4 Protocol Decenber 2000

fs location4d

struct fs_locationd {
utf8string server <>;
pat hnane4 r oot pat h;

b

fs_locations4

struct fs_locations4d {
pat hnane4 fs root;
fs location4 |ocations<>;

s

The fs_locationd4 and fs_| ocations4 data types are used for the
fs_locations recommended attribute which is used for migration
and replication support.

fattr4
struct fattr4 {
bi t rap4 attr mask
attrlist4 attr_vals;

s

The fattr4 structure is used to represent file and directory
attributes

The bitmap is a counted array of 32 bit integers used to contain
bit values. The position of the integer in the array that

contains bit n can be conputed fromthe expression (n / 32) and
its bit within that integer is (n nod 32).

change_i nfo4

struct change_info4 {

bool at omi c;
changei d4 bef or e;
changei d4 after

Shepler, et al. St andards Track [Page 16]

RFC 3010 NFS version 4 Protocol Decenber 2000

This structure is used with the CREATE, LINK, REMOVE, RENAME
operations to let the client the know value of the change
attribute for the directory in which the target file system
obj ect resides.

clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

b

The clientaddr4 structure is used as part of the SETCLI ENT
operation to either specify the address of the client that is
using a clientid or as part of the call back registration.

cb client4
struct cb_client4 {

unsigned int cb_program
clientaddr4 cb_location

i
This structure is used by the client to informthe server of its
call back address; includes the program nunber and client
addr ess.

nfs_client_id4

struct nfs_client_id4 {

verifierd verifier;
opaque i d<>;
s
This structure is part of the argunments to the SETCLI ENTID
operati on.

nfs_| ockowner 4

struct nfs_|l ockowner4 {
clientid4 clientid;
opaque owner <>;

b

Shepler, et al. St andards Track [Page 17]

RFC 3010 NFS version 4 Protocol Decenber 2000

This structure is used to identify the owner of a OPEN share or
file I ock.

3. RPC and Security Flavor

The NFS version 4 protocol is a Renpbte Procedure Call (RPC)
application that uses RPC version 2 and the correspondi ng eXterna
Dat a Representation (XDR) as defined in [RFC1831] and [RFC1832]. The
RPCSEC_GSS security flavor as defined in [RFC2203] MJUST be used as
the mechanismto deliver stronger security for the NFS version 4

pr ot ocol

3.1. Ports and Transports

Historically, NFS version 2 and version 3 servers have resided on
port 2049. The registered port 2049 [RFC1700] for the NFS protoco
shoul d be the default configuration. Using the registered port for
NFS services neans the NFS client will not need to use the RPC

bi ndi ng protocols as described in [RFC1833]; this will allow NFS to
transit firewalls.

The transport used by the RPC service for the NFS version 4 protoco
MUST provi de congestion control conparable to that defined for TCP in
[RFC2581]. If the operating environnent inplenents TCP, the NFS
version 4 protocol SHOULD be supported over TCP. The NFS client and
server nmay use other transports if they support congestion control as
defined above and in those cases a nechani sm may be provided to
override TCP usage in favor of another transport.

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s

congestion control via short |ived connections and will inprove
performance for the WAN environnent by elimnating the need for SYN
handshakes.

Note that for various tiners, the client and server should avoid
i nadvertent synchroni zation of those tinmers. For further discussion
of the general issue refer to [Floyd].

3.2. Security Flavors

Tradi tional RPC inplenentations have included AUTH NONE, AUTH SYS
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203] an
additional security flavor of RPCSEC GSS has been introduced which
uses the functionality of GSS-API [RFC2078]. This allows for the use
of varying security nmechani sns by the RPC | ayer without the

addi tional inplenentation overhead of adding RPC security flavors.

For NFS version 4, the RPCSEC GSS security flavor MJUST be used to

Shepler, et al. St andards Track [Page 18]

RFC 3010 NFS version 4 Protocol Decenber 2000

enabl e the mandatory security nechanism Oher flavors, such as,
AUTH NONE, AUTH SYS, and AUTH DH MAY be inplenented as well.

3.2.1. Security nechanisns for NFS version 4

The use of RPCSEC GSS requires sel ection of: nechanism quality of
protection, and service (authentication, integrity, privacy). The
remai nder of this docunment will refer to these three paraneters of
the RPCSEC GSS security as the security triple.

3.2.1.1. Kerberos V5 as security triple

The Kerberos V5 GSS-APlI nechani sm as described in [RFC1964] MJUST be
i mpl ement ed and provide the followi ng security triples.

col unm descri ptions:

== nunber of pseudo flavor
== nane of pseudo flavor
mechanisms QD

== mechani sm s al gorithm(s)
== RPCSEC GSS service

abrwNBE
Il
I

390003 krb5 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_none
390004 krb5i 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_integrity
390005 krb5p 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_privacy

for integrity,

and 56 bit DES

for privacy.

Note that the pseudo flavor is presented here as a mapping aid to the
i npl ementor. Because this NFS protocol includes a nmethod to
negotiate security and it understands the GSS-API mechanism the
pseudo flavor is not needed. The pseudo flavor is needed for NFS
version 3 since the security negotiation is done via the MOUNT

pr ot ocol

For a di scussion of NFS use of RPCSEC GSS and Kerberos V5, please
see [RFC2623].

3.2.1.2. LIPKEY as a security triple
The LI PKEY GSS- APl nechani sm as described in [RFC2847] MJST be
i mpl ement ed and provide the followi ng security triples. The

definition of the columms natches the previous subsection "Kerberos
V5 as security triple"

Shepler, et al. St andards Track [Page 19]

RFC 3010 NFS version 4 Protocol Decenber 2000

1 2 3 4 5

390006 Ii pkey 1.3.6.1.5.5.9 negoti ated rpc_gss_svc_none

390007 Iipkey-i 1.3.6.1.5.5.9 negotiated rpc_gss_svc_integrity

390008 I|ipkey-p 1.3.6.1.5.5.9 negotiated rpc_gss_svc_privacy
The mechanismalgorithmis listed as "negotiated". This is because

LIPKEY is layered on SPKM 3 and in SPKM 3 [RFC2847] the
confidentiality and integrity algorithns are negotiated. Since
SPKM 3 specifies HVAC-MD5 for integrity as MANDATORY, 128 bit
cast5CBC for confidentiality for privacy as MANDATCRY, and further
specifies that HVAC-MD5 and cast5CBC MUST be listed first before
weaker al gorithns, specifying "negotiated" in colum 4 does not
impair interoperability. In the event an SPKM 3 peer does not
support the nandatory al gorithns, the other peer is free to accept or
reject the GSS-API context creation

Because SPKM 3 negotiates the algorithns, subsequent calls to
LIPKEY's GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality
of protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

LI PKEY uses SPKM 3 to create a secure channel in which to pass a user
nane and password fromthe client to the user. Once the user nane
and password have been accepted by the server, calls to the LIPKEY
context are redirected to the SPKM 3 context. See [RFC2847] for nore
details.

3.2.1.3. SPKM3 as a security triple

The SPKM 3 GSS- APl nechani sm as described in [RFC2847] MJST be

i mpl ement ed and provide the follow ng security triples. The
definition of the colums natches the previous subsection "Kerberos
V5 as security triple"

390009 spknB 1.3.6.1.5.5.1.3 negoti ated rpc_gss_svc_none
390010 spknBi 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_integrity
390011 spknBp 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_privacy

For a discussion as to why the nechanismalgorithmis listed as
"negoti ated", see the previous section "LIPKEY as a security triple."

Because SPKM 3 negotiates the al gorithnms, subsequent calls to SPKM
3’s GSS Wap() and GSS _ GetM C() by RPCSEC GSS will use a quality of
protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

Shepler, et al. St andards Track [Page 20]

RFC 3010 NFS version 4 Protocol Decenber 2000

Even though LIPKEY is |ayered over SPKM3, SPKM 3 is specified as a
mandatory set of triples to handle the situations where the initiator
(the client) is anonynous or where the initiator has its own
certificate. |If the initiator is anonynmous, there will not be a user
nane and password to send to the target (the server). |If the
initiator has its own certificate, then using passwords is
super f | uous.

3.3. Security Negotiation

Wth the NFS version 4 server potentially offering nultiple security
mechani sns, the client needs a nethod to determ ne or negotiate which
mechanismis to be used for its comunication with the server. The
NFS server may have nultiple points within its file system name space
that are available for use by NFS clients. In turn the NFS server
may be configured such that each of these entry points may have
different or nmultiple security mechani snms in use.

The security negotiation between client and server nust be done with
a secure channel to elinmnate the possibility of a third party
intercepting the negotiati on sequence and forcing the client and
server to choose a |ower level of security than required or desired

3.3.1. Security Error

Based on the assunption that each NFS version 4 client and server
nmust support a mninum set of security (i.e. LIPKEY, SPKM 3, and

Ker beros-V5 all under RPCSEC GSS), the NFS client will start its
communi cation with the server with one of the mniml security
triples. During conmunication with the server, the client nay
receive an NFS error of NFS4ERR WRONGSEC. This error allows the
server to notify the client that the security triple currently being
used is not appropriate for access to the server’s file system
resources. The client is then responsible for deternining what
security triples are available at the server and choose one which is
appropriate for the client.

3.3.2. SECINFO

The new SECI NFO operation will allow the client to deternine, on a
per filehandl e basis, what security triple is to be used for server
access. In general, the client will not have to use the SECI NFO
procedure except during initial communication with the server or when
the client crosses policy boundaries at the server. It is possible
that the server’s policies change during the client’s interaction
therefore forcing the client to negotiate a new security triple.

Shepler, et al. St andards Track [Page 21]

RFC 3010 NFS version 4 Protocol Decenber 2000

3.4. Callback RPC Authentication

The cal | back RPC (described later) nust nutually authenticate the NFS
server to the principal that acquired the clientid (al so descri bed

| ater), using the sane security flavor the original SETCLIENTID
operation used. Because LIPKEY is |ayered over SPKM3, it is
permissible for the server to use SPKM 3 and not LIPKEY for the
cal I back even if the client used LIPKEY for SETCLI ENTID.

For AUTH NONE, there are no principals, so this is a non-issue

For AUTH SYS, the server sinply uses the AUTH SYS credential that the
user used when it set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni X. host @onai n

where host and domain are variables corresponding to the nanme of
server host and directory services domain in which it lives such as a
Net work I nformation System donmain or a DNS donai n.

Regar dl ess of what security mechani sm under RPCSEC GSS is being used,
the NFS server, MJST identify itself in GSS-APlI via a

GSS_C NT_HOSTBASED SERVI CE nane type. GSS_C NT_HOSTBASED SERVI CE
nanes are of the form

servi ce@ost nane
For NFS, the "service" elenment is

nfs
| mpl enent ati ons of security mechanisns will convert nfs@ostnane to
various different forns. For Kerberos V5 and LIPKEY, the follow ng
formis RECOVVENDED:

nf s/ host nane
For Kerberos V5, nfs/hostname would be a server principal in the
Kerberos Key Distribution Center database. For LIPKEY, this would be
the usernane passed to the target (the NFS version 4 client that
receives the call back).
It should be noted that LIPKEY may not work for callbacks, since the

LI PKEY client uses a user id/password. |If the NFS client receiving
the cal l back can authenticate the NFS server’s user nane/ password

Shepler, et al. St andards Track [Page 22]

RFC 3010 NFS version 4 Protocol Decenber 2000

pair, and if the user that the NFS server is authenticating to has a
public key certificate, then it works.

In situations where NFS client uses LIPKEY and uses a per-host
principal for the SETCLI ENTI D operation, instead of using LIPKEY for
SETCLIENTID, it is RECOMMENDED t hat SPKM 3 wi th nmutual authentication
be used. This effectively nmeans that the client will use a
certificate to authenticate and identify the initiator to the target
on the NFS server. Using SPKM 3 and not LIPKEY has the follow ng
advant ages:

o Wen the server does a callback, it must authenticate to the
principal used in the SETCLIENTID. Even if LIPKEY is used,
because LIPKEY is layered over SPKM 3, the NFS client will need to
have a certificate that corresponds to the principal used in the
SETCLI ENTI D operation. Froman administrative perspective, having
a user nane, password, and certificate for both the client and
server is redundant.

0 LIPKEY was intended to mininmize additional infrastructure
requi renents beyond a certificate for the target, and the
expectation is that existing password infrastructure can be
| everaged for the initiator. |In sonme environnments, a per-host
password does not exist yet. |If certificates are used for any
per-host principals, then additional password infrastructure is
not needed.

0o In cases when a host is both an NFS client and server, it can
share the sane per-host certificate.

4. Fil ehandl es

The filehandle in the NFS protocol is a per server unique identifier
for a file systemobject. The contents of the filehandl e are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system
object. Since the filehandle is the client’s reference to an object
and the client may cache this reference, the server SHOULD not reuse
a filehandl e for another file systemobject. |If the server needs to
reuse a filehandl e value, the tinme el apsed before reuse SHOULD be

| arge enough such that it is unlikely the client has a cached copy of
the reused filehandle value. Note that a client may cache a
filehandle for a very long tine. For exanple, a client nay cache NFS
data to local storage as a nethod to expand its effective cache size
and as a means to survive client restarts. Therefore, the lifetine
of a cached fil ehandl e may be extended.

Shepler, et al. St andards Track [Page 23]

RFC 3010 NFS version 4 Protocol Decenber 2000

4.1. Obtaining the First Filehandle

The operations of the NFS protocol are defined in terns of one or
nmore filehandles. Therefore, the client needs a filehandle to
initiate comunication with the server. Wth the NFS version 2
protocol [RFCL094] and the NFS version 3 protocol [RFC1813], there
exists an ancillary protocol to obtain this first filehandle. The
MOUNT protocol, RPC program nunber 100005, provides the nmechani sm of
translating a string based file system path nane to a fil ehandl e

whi ch can then be used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP procedure in
the NFS version 2 and 3 protocols, it has been denonstrated that the
MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFS version 4 protocol will not use an ancillary
protocol for translation fromstring based path nanes to a
filehandle. Two special filehandles will be used as starting points
for the NFS client.

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual” root of the file system nane
space at the NFS server. The client uses or starts with the ROOT
filehandl e by enpl oyi ng the PUTROOTFH operation. The PUTROOTFH
operation instructs the server to set the "current”" filehandle to the
ROOT of the server’s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’'s file
tree with the LOOKUP procedure. A conplete discussion of the server
nane space is in the section "NFS Server Nane Space"

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC fil ehandle. Unlike the
ROOT fil ehandl e, the PUBLIC fil ehandl e nay be bound or represent an
arbitrary file systemobject at the server. The server is
responsible for this binding. It nmay be that the PUBLIC fil ehandl e
and the ROOT filehandle refer to the sane file system object.

However, it is up to the adnministrative software at the server and
the policies of the server adnministrator to define the binding of the
PUBLI C fil ehandl e and server file systemobject. The client may not
make any assunptions about this binding.

Shepler, et al. St andards Track [Page 24]

RFC 3010 NFS version 4 Protocol Decenber 2000

4.2. Filehandl e Types

In the NFS version 2 and 3 protocols, there was one type of
filehandle with a single set of semantics. The NFS version 4
protocol introduces a new type of filehandle in an attenpt to
acconmodat e certain server environnents. The first type of
filehandle is 'persistent’. The senantics of a persistent filehandle
are the sane as the filehandl es of the NFS version 2 and 3 protocols.
The second or new type of filehandle is the "volatile" filehandle.

The volatile filehandl e type is being introduced to address server
functionality or inplenentation issues which nake correct

i npl enentation of a persistent filehandle infeasible. Sone server
environnents do not provide a file systemlevel invariant that can be
used to construct a persistent filehandle. The underlying server
file systemmay not provide the invariant or the server’s file system
progranm ng interfaces may not provide access to the needed
invariant. Volatile filehandl es may ease the inplenentation of
server functionality such as hierarchical storage nmanagenent or file
system reorgani zation or nmigration. However, the volatile filehandle
i ncreases the inplenentation burden for the client. However this

i ncreased burden is deened acceptabl e based on the overall gains

achi eved by the protocol.

Since the client will need to handl e persistent and volatile
filehandl e differently, a file attribute is defined which may be used
by the client to determine the fil ehandl e types being returned by the
server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a later request and
can conpare two filehandles fromthe same server for equality by
doi ng a byte-by-byte conpari son. However, the client MJST NOT
otherwi se interpret the contents of filehandles. [If two filehandles
fromthe sane server are equal, they MIST refer to the sane file. |If
they are not equal, the client may use information provided by the
server, in the formof file attributes, to determ ne whether they
denote the sane files or different files. The client would do this
as necessary for client side caching. Servers SHOULD try to maintain
a one-to-one correspondence between filehandles and files but this is
not required. dients MJIST use fil ehandl e conparisons only to

i mprove performance, not for correct behavior. Al clients need to
be prepared for situations in which it cannot be determ ned whet her
two filehandl es denote the sane object and in such cases, avoid
maki ng invalid assunptions which m ght cause incorrect behavi or

Shepler, et al. St andards Track [Page 25]

RFC 3010 NFS version 4 Protocol Decenber 2000

Furt her discussion of filehandle and attribute conparison in the
context of data caching is presented in the section "Data Cachi ng and
File lIdentity".

As an exanple, in the case that two different path nanes when
traversed at the server terninate at the sane file system object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two file nanes which refer to
the sane underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the same file, the server SHOULD
return the same filehandl e for both path nanes traversals.

4,2.2. Persistent Filehandle

A persistent filehandle is defined as having a fixed value for the
lifetime of the file systemobject to which it refers. Once the

server creates the filehandle for a file system object, the server
MUST accept the sane filehandle for the object for the lifetine of
the object. |If the server restarts or reboots the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Sinilarly, if the file systemis mgrated, the new
NFS server must honor the sane file handle as the old NFS server.

The persistent filehandle will be becone stale or invalid when the
file systemobject is renoved. Wen the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFS4AERR STALE. A filehandle may becone stal e when the
file systemcontaining the object is no |onger available. The file
system may become unavailable if it exists on renovabl e nedia and the
media is no longer available at the server or the file systemin
whol e has been destroyed or the file systemhas sinply been renoved
fromthe server’s nanme space (i.e. unnounted in a Unix environnent).

4.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server nay deternine
that a volatile filehandle is no longer valid at nmany different
points in time. |If the server can definitively deternmine that a
volatile filehandle refers to an object that has been renpved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). 1In all other cases where the server
deternmines that a volatile filehandl e can no | onger be used, it
shoul d return an error of NFS4ERR_FHEXPI RED

Shepler, et al. St andards Track [Page 26]

RFC 3010 NFS version 4 Protocol Decenber 2000

The mandatory attribute "fh _expire_ type" is used by the client to
determ ne what type of filehandle the server is providing for a
particular file system This attribute is a bitmask with the
foll owi ng val ues:

FH4_PERSI STENT
The val ue of FH4_PERSI STENT is used to indicate a persistent
filehandl e, which is valid until the object is renoved fromthe
file system The server will not return NFS4ERR_FHEXPI RED f or
this filehandle. FH4 _PERSI STENT is defined as a value in which
none of the bits specified bel ow are set.

FH4_NOEXPI RE_W TH_OPEN
The filehandle will not expire while client has the file open
If this bit is set, then the values FH4_VOLATI LE_ANY or
FHA_VOL_RENAME do not inpact expiration while the file is open
Once the file is closed or if the FHA_NOEXPI RE WTH OPEN bit is
false, the rest of the volatile related bits apply.

FH4_VOLATI LE_ANY
The filehandle may expire at any tinme and will expire during
system nigration and renane.

FH4_VOL_M GRATI ON
The filehandle will expire during file systemmgration. My
only be set if FH4_VOLATILE_ANY is not set.

FH4_VOL_RENAME
The filehandl e may expire due to a renane. This includes a
renane by the requesting client or a renane by another client.
May only be set if FH4 VOLATILE ANY is not set.

Servers which provide volatile filehandl es should deny a RENAME or
REMOVE that woul d affect an OPEN file or any of the conponents
leading to the OPEN file. In addition, the server should deny al
RENAME or REMOVE requests during the grace or |ease period upon
server restart.

The reader nmay be wondering why there are three FH4_VOL* bits and why
FH4 VOLATI LE_ANY is exclusive of FH4_ VOL_M GRATI ON and
FHA_VOL_RENAME. |If the a filehandle is normally persistent but
cannot persist across a file set nigration, then the presence of the
FHA VOL_M GRATI ON or FH4_VOL_RENAME tells the client that it can
treat the file handl e as persistent for purposes of maintaining a
file name to file handle cache, except for the specific event
described by the bit. However, FH4_VOLATILE ANY tells the client
that it should not maintain such a cache for unopened files. A
server MJST not present FH4 VOLATILE ANY with FH4_VOL_M GRATI ON or

Shepler, et al. St andards Track [Page 27]

RFC 3010 NFS version 4 Protocol Decenber 2000

FHA VOL_RENAME as this will lead to confusion. FH4 VOLATI LE_ANY
implies that the file handle will expire upon migration or renane, in
addition to other events.

4.2.4. One Method of Constructing a Volatile Filehandle

As nentioned, in sone instances a filehandle is stale (no |onger
val i d; perhaps because the file was renoved fromthe server) or it is
expired (the underlying file is valid but since the filehandle is
volatile, it may have expired). Thus the server needs to be able to
return NFS4ERR STALE in the former case and NFS4ERR FHEXPI RED i n the
| atter case. This can be done by careful construction of the volatile
filehandle. One possible inplenentation follows.

A volatile filehandl e, while opaque to the client could contain:
[volatile bit =1 | server boot time | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunmber is the generation nunber for the table
entry/ sl ot

If the server boot tinme is less than the current server boot tineg,
return NFS4ERR FHEXPIRED. |If slot is out of range, return
NFS4ERR_BADHANDLE. |If the generati on nunber does not match, return
NFS4ERR_FHEXPI RED.

When the server reboots, the table is gone (it is volatile).

If volatile bit is 0, then it is a persistent filehandle with a
different structure following it.

4.3. Cdient Recovery from Fil ehandl e Expiration
I f possible, the client SHOULD recover fromthe receipt of an

NFSAERR FHEXPI RED error. The client nust take on additiona
responsibility so that it nmay prepare itself to recover fromthe

expiration of a volatile filehandle. |If the server returns
persistent fil ehandles, the client does not need these additiona
st eps.

For volatile filehandles, nbst comonly the client will need to store
t he conponent nanes leading up to and including the file system
object in question. Wth these nanes, the client should be able to
recover by finding a filehandle in the nane space that is stil

avail able or by starting at the root of the server’s file system name
space.

Shepler, et al. St andards Track [Page 28]

RFC 3010 NFS version 4 Protocol Decenber 2000

If the expired filehandle refers to an object that has been renoved
fromthe file system obviously the client will not be able to
recover fromthe expired fil ehandle.

It is also possible that the expired filehandle refers to a file that
has been renanmed. |If the file was renanmed by another client, again
it is possible that the original client will not be able to recover
However, in the case that the client itself is renaming the file and
the file is open, it is possible that the client may be able to
recover. The client can determ ne the new path name based on the
processing of the renanme request. The client can then regenerate the
new fil ehandl e based on the new path nanme. The client could al so use
t he conpound operation nechanismto construct a set of operations
I'ike:

RENAME A B
LOOKUP B
CGETFH

5. File Attributes

To neet the requirenents of extensibility and increased
interoperability with non-Unix platforns, attributes nust be handl ed
ina flexible manner. The NFS Version 3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure can not be extended as
new needs arise and it provides no way to indicate non-support. Wth
the NFS Version 4 protocol, the client will be able to ask what
attributes the server supports and will be able to request only those
attributes in which it is interested.

To this end, attributes will be divided into three groups: mandatory,
recomended, and nanmed. Both mandatory and recomended attri butes
are supported in the NFS version 4 protocol by a specific and well -
defined encoding and are identified by nunber. They are requested by
setting a bit in the bit vector sent in the GETATTR request; the
server response includes a bit vector to list what attributes were
returned in the response. New nandatory or recommended attri butes
may be added to the NFS protocol between najor revisions by
publishing a standards-track RFC which allocates a new attribute
nunber val ue and defines the encoding for the attribute. See the
section "M nor Versioning" for further discussion

Named attributes are accessed by the new OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system obj ect. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the naned attributes is a directory object accessible by LOOKUP

Shepler, et al. St andards Track [Page 29]

RFC 3010 NFS version 4 Protocol Decenber 2000

or READDI R and contains files whose nanes represent the naned
attributes and whose data bytes are the value of the attribute. For

exanpl e:
L OOKUP "foo" ; look up file
GETATTR attrbits
OPENATTR ; access foo’'s named attributes
L OOKUP "x11i con" ; look up specific attribute
READ 0, 4096 ; read stream of bytes

Nanmed attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenentors are strongly
encouraged to define their new attributes as recommended attri butes

by bringing themto the | ETF standards-track process.

The set of attributes which are classified as mandatory is
deliberately small since servers nust do whatever it takes to support
them The recommended attributes may be unsupported; though a server
shoul d support as nmany as it can. Attributes are deened nmandatory if
the data is both needed by a | arge nunber of clients and is not

ot herwi se reasonably conputable by the client when support is not
provi ded on the server.

5.1. Mandatory Attributes

These MUST be supported by every NFS Version 4 client and server in
order to ensure a mininumlevel of interoperability. The server nust
store and return these attributes and the client nmust be able to
function with an attribute set limted to these attributes. Wth
just the mandatory attributes sone client functionality may be
impaired or limted in sone ways. A client nmay ask for any of these
attributes to be returned by setting a bit in the GETATTR request and
the server nust return their val ue.

5. 2. Recommended Attri butes

These attributes are understood well enough to warrant support in the
NFS Version 4 protocol. However, they may not be supported on all
clients and servers. A client may ask for any of these attributes to
be returned by setting a bit in the GETATTR request but nust handl e
the case where the server does not return them A client may ask for
the set of attributes the server supports and should not request
attributes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes which are difficult to support in their
operating environnents. A server should provide attributes whenever

Shepler, et al. St andards Track [Page 30]

RFC 3010 NFS version 4 Protocol Decenber 2000

they don’t have to "tell lies" to the client. For exanple, a file
nmodi fication tine should be either an accurate tine or should not be
supported by the server. This will not always be confortable to
clients but it seenms that the client has a better ability to
fabricate or construct an attribute or do without the attribute.

5.3. Naned Attributes

These attributes are not supported by direct encoding in the NFS
Version 4 protocol but are accessed by string nanmes rather than
nunbers and correspond to an uninterpreted stream of bytes which are
stored with the file systemobject. The nane space for these
attributes may be accessed by using the OPENATTR operation. The
OPENATTR operation returns a filehandle for a virtual "attribute
directory" and further perusal of the name space nmay be done using
READDI R and LOOKUP operations on this filehandle. Named attributes
may then be exam ned or changed by normal READ and WRI TE and CREATE
operations on the filehandles returned from READDI R and LOOKUP.
Naned attri butes nmay have attributes.

It is reconmmended that servers support arbitrary named attributes. A
client should not depend on the ability to store any nanmed attributes
in the server’s file system |[If a server does support naned
attributes, a client which is also able to handl e them should be able
to copy a file's data and neta-data with conpl ete transparency from
one location to another; this would inply that names allowed for
regular directory entries are valid for named attribute names as

wel |

Nanes of attributes will not be controlled by this docunent or other
| ETF standards track docunents. See the section "I ANA
Consi derations" for further discussion.

5.4. Mandatory Attributes - Definitions

Narme # Dat aType Access Descri ption

supp_attr 0 bi t map READ The bit vector which
woul d retrieve all
mandat ory and
recomended attributes
that are supported for
this object.

type 1 nfs4 _ftype READ The type of the object

(file, directory,
sym i nk)

Shepler, et al. St andards Track [Page 31]

RFC 3010 NFS version 4 Protocol Decenber 2000

fh_expire_type 2 ui nt 32 READ Server uses this to
specify fil ehandl e
expi ration behavior to
the client. See the
section "Fil ehandl es”
for additiona
descri ption.

change 3 ui nt 64 READ A val ue created by the
server that the client
can use to determne
if file data,
directory contents or
attributes of the
obj ect have been
nodi fied. The server
may return the
object’s tine_nodify
attribute for this
attribute’s val ue but
only if the file
system obj ect can not
be updated nore
frequently than the
resol ution of
time_nodify.

si ze 4 ui nt 64 R'W The size of the object
in bytes.

I i nk_support 5 bool ean READ Does the object’s file
system supports hard
i nks?

sym i nk_support 6 bool ean READ Does the object’s file

system supports
synbolic |inks?

named_attr 7 bool ean READ Does this object have
naned attributes?

fsid 8 fsid4 READ Uni que file system
identifier for the
file system hol di ng
this object. fsid
cont ai ns maj or and
m nor comnponents each
of which are uint64.

Shepler, et al. St andards Track [Page 32]

RFC 3010

uni que_handl es 9

| ease_tinme 10

rdattr_error 11

5.5. Recommended Attributes -

Name #

bool ean

nfs | ease4d

enum

Data Type

Definitions

NFS version 4 Protoco

READ

READ

READ

Access

Decenber 2000

Are two distinct

fil ehandl es guarant eed
to refer to two
different file system
obj ect s?

Duration of |eases at
server in seconds.

Error returned from

getattr during
readdir.

Description

ACL 12

acl support 13

ar chi ve 14

cansettine 15

case_insensitive 16

case_preserving 17

Shepler, et al.

nf sace4<>

ui nt 32

bool ean

bool ean

bool ean

bool ean

R'W

READ

R'W

READ

READ

READ

St andards Track

The access contro
list for the object.

I ndi cat es what types
of ACLs are supported
on the current file
system

Whet her or not this
file has been

archi ved since the
time of |ast
nodi fi cation
(deprecated in favor
of time_backup).

Is the server able to
change the tinmes for
a file system object
as specified in a
SETATTR operation?

Are fil enane
comparisons on this
file system case

i nsensitive?

Is fil enane case on

this file system
preserved?

[Page 33]

RFC 3010

chown_restricted

filehandl e

fileid

files_ avail

files_free

files total

Shepler, et al.

18

19

20

21

22

23

NFS version 4 Protoco

bool ean

nfs4_fh

ui nt 64

ui nt 64

ui nt 64

ui nt 64

READ

READ

READ

READ

READ

READ

St andards Track

Decenber 2000

If TRUE, the server
will reject any
request to change

ei ther the owner or
the group associ at ed
with a fileif the
caller is not a
privileged user (for
exanple, "root" in
Uni X operating
environnments or in NT
t he "Take Oaner shi p"
privilege)

The fil ehandl e of
this object
(primarily for
readdi r requests).

A nunber uni quely
identifying the file
within the file
system

File slots avail able
to this user on the
file system
containing this
object - this should
be the small est
relevant limt.

Free file slots on
the file system
containing this
object - this should
be the snmall est
relevant linmt.

Total file slots on
the file system
containing this

obj ect.

[Page 34]

RFC 3010

fs_locations

hi dden

honbgeneous

maxfil esi ze

max| i nk

maxnamne

maxr ead

maxwrite

Shepler, et al.

24

25

26

27

28

29

30

31

NFS version 4 Protoco

fs_locations READ

bool ean R'wW
bool ean READ
ui nt 64 READ
ui nt 32 READ
ui nt 32 READ
ui nt 64 READ
ui nt 64 READ

St andards Track

Decenber 2000

Locati ons where this
file system may be

f ound. If the server
returns NFS4ERR_MOVED
as an error, this
attri bute nmust be
support ed.

Is file considered
hi dden wi th respect
to the WN32 APl ?

Whet her or not this
object’s file system
i s honbgeneous, i.e.
are per file system
attributes the sane
for all file systems
obj ect s.

Maxi mum support ed
file size for the
file systemof this
obj ect.

Maxi mum nunber of
links for this
obj ect.

Maxi mum fi | enanme size
supported for this
obj ect.

Maxi mum read si ze
supported for this
obj ect.

Maxi mum wite size
supported for this
object. This

attri bute SHOULD be
supported if the file
is witable. Lack of
this attribute can
lead to the client

ei ther wasting

[Page 35]

RFC 3010

m net ype

node

no_trunc

nunl i nks

owner

owner _group

quota_avail _hard

quot a_avail _soft

quot a_used

r awdev

Shepler, et al.

32

33

34

35

36

37

38

39

40

41

NFS version 4 Protocol

ut f 8<> R'W
node4 R'W
bool ean READ
ui nt 32 READ
ut f 8<> R'W
ut f 8<> R'W
ui nt 64 READ
ui nt 64 READ
ui nt 64 READ
specdat a4 READ

St andards Track

Decenber 2000

bandwi dt h or not
recei ving the best
per f or mance.

M ME body
type/ subtype of this
obj ect.

Uni x-styl e pernission
bits for this object
(deprecated in favor
of ACLs)

If a name | onger than
name_max i s used,
will an error be
returned or will the
nane be truncated?

Nunber of hard |inks
to this object.

The string nanme of
the owner of this
obj ect.

The string nane of
t he group ownership
of this object.

For definition see
"Quota Attributes”
section bel ow.

For definition see
"Quota Attributes"
section bel ow.

For definition see
"Quota Attributes"
section bel ow.

Raw devi ce
identifier. Unix
devi ce maj or/ m nor
node i nformati on.

[Page 36]

RFC 3010

space_avai

space_free

space_t ot al

space_used

system

ti me_access

ti me_access_set

ti me_backup

tinme_create

Shepler, et al.

42

43

44

45

46

47

48

49

50

NFS version 4 Protoco

ui nt 64 READ
ui nt 64 READ
ui nt 64 READ
ui nt 64 READ
bool ean R'wW
nf sti me4 READ
settined WRI TE
nf sti me4 R'W
nf sti me4 R'wW

St andards Track

Decenber 2000

Di sk space in bytes
available to this
user on the file
syst em cont ai ni ng
this object - this
shoul d be the
snal | est rel evant
limt.

Free di sk space in
bytes on the file
syst em cont ai ni ng
this object - this
shoul d be the

smal | est rel evant
limt.
Total disk space in

bytes on the file
syst em cont ai ni ng
this object.

Number of file system
bytes all ocated to
this object.

Is this file a system
file with respect to
the WN32 API?

The time of |ast
access to the object.

Set the time of |ast
access to the object.
SETATTR use only.

The time of |ast
backup of the object.

The tine of creation
of the object. This
attri bute does not
have any relation to
the traditional Unix
file attribute
"ctinme" or "change
tinme".

[Page 37]

RFC 3010 NFS version 4 Protocol Decenber 2000

tinme_delta 51 nfsti me4 READ Smal | est usefu
server tine
granularity.

ti me_met adat a 52 nfsti ne4 R'W The tine of |ast
net a- dat a
nodi fication of the
obj ect.

time_nodify 53 nf sti me4 READ The tine of |ast
nmodi fication to the
obj ect.

time_nodi fy_set 54 settined VWRI TE Set the tine of |ast

nodi fication to the
object. SETATTR use
only.

5.6. Interpreting owner and owner _group

The recomended attributes "owner" and "owner_group" are represented
internms of a UTF-8 string. To avoid a representation that is tied
to a particular underlying inplenentation at the client or server
the use of the UTF-8 string has been chosen. Note that section 6.1
of [RFC2624] provides additional rationale. It is expected that the
client and server will have their own |ocal representation of owner
and owner_group that is used for |ocal storage or presentation to the
end user. Therefore, it is expected that when these attributes are
transferred between the client and server that the |oca
representation is translated to a syntax of the form

"user @ns_donain". This will allow for a client and server that do
not use the sanme |local representation the ability to translate to a
comon syntax that can be interpreted by both.

The translation is not specified as part of the protocol. This

all ows various solutions to be enployed. For exanple, a |loca
translation table may be consulted that naps between a nuneric id to
t he user @ns_domai n syntax. A nane service nmay al so be used to
acconplish the translation. The "dns_domain" portion of the owner
string is meant to be a DNS domai n name. For exanple, user@etf.org

In the case where there is no translation available to the client or
server, the attribute value nust be constructed without the "@.
Therefore, the absence of the @fromthe owner or owner_group
attribute signifies that no translati on was avail abl e and the
receiver of the attribute should not place any special mnmeaning with

Shepler, et al. St andards Track [Page 38]

RFC 3010 NFS version 4 Protocol Decenber 2000

the attribute value. Even though the attribute value can not be
translated, it may still be useful. In the case of a client, the
attribute string may be used for |ocal display of ownership.

5.7. Character Case Attributes

Wth respect to the case_insensitive and case_preserving attributes,
each UCS-4 character (which UTF-8 encodes) has a "long descriptive
nane" [RFCL1345] which may or may not included the word " CAPI TAL" or
"SMALL". The presence of SMALL or CAPITAL allows an NFS server to

i mpl ement unanbi guous and efficient table driven mappings for case

i nsensitive conparisons, and non-case-preserving storage. For
general character handling and internationalization issues, see the
section "Internationalization".

5.8. Quota Attributes

For the attributes related to file system quotas, the foll ow ng
definitions apply:

quot a_avail _soft
The value in bytes which represents the amount of additiona
di sk space that can be allocated to this file or directory
before the user nmay reasonably be warned. It is understood
that this space nmay be consuned by allocations to other files
or directories though there is a rule as to which other files
or directories.

quot a_avail _hard
The value in bytes which represent the anpbunt of additiona
di sk space beyond the current allocation that can be allocated
to this file or directory before further allocations will be
refused. It is understood that this space may be consuned by
allocations to other files or directories.

quot a_used
The value in bytes which represent the anount of disc space
used by this file or directory and possibly a nunber of other
simlar files or directories, where the set of "similar" neets
at least the criterion that allocating space to any file or
directory in the set will reduce the "quota_avail hard" of
every other file or directory in the set.

Note that there may be a nunmber of distinct but overl apping
sets of files or directories for which a quota_used value is
mai ntained. E.g. "all files with a given owner"”, "all files
with a given group owner". etc.

Shepler, et al. St andards Track [Page 39]

RFC 3010 NFS version 4 Protocol Decenber 2000

The server is at liberty to choose any of those sets but should
do so in a repeatable way. The rule nmay be configured per-
filesystemor nmay be "choose the set with the smallest quota"

5.9. Access Control Lists

The NFS ACL attribute is an array of access control entries (ACE)
There are various access control entry types. The server is able to
communi cate whi ch ACE types are supported by returning the
appropriate value within the acl support attribute. The types of ACEs
are defined as foll ows:

Type Description

ALLOW Explicitly grants the access defined in
acemask4 to the file or directory.

DENY Explicitly denies the access defined in
acemask4 to the file or directory.

AUDI T LOG (system dependent) any access
attenpt to a file or directory which
uses any of the access nethods specified
in acenask4.

ALARM Cenerate a system ALARM (system
dependent) when any access attenpt is
made to a file or directory for the
access nethods specified in acemask4.

The NFS ACE attribute is defined as foll ows:

typedef uint32_t acet ype4;
typedef uint32_t acef |l ag4;
typedef uint32_t acemask4;
struct nfsaced {
acetype4d type;
acefl ag4 flag;
acenask4 access_nask;
utf8string who;

b

To determine if an ACCESS or OPEN request succeeds each nfsace4 entry
is processed in order by the server. Only ACEs which have a "who"
that matches the requester are considered. Each ACE is processed
until all of the bits of the requester’s access have been ALLOWED.
Once a bit (see bel ow) has been ALLONED by an ACCESS ALLOWED ACE, it

Shepler, et al. St andards Track [Page 40]

RFC 3010 NFS version 4 Protocol Decenber 2000

is no longer considered in the processing of later ACEs. If an
ACCESS_DENI ED _ACE is encountered where the requester’s node still has
UNALLOWED bits in common with the "access_mask"” of the ACE, the
request is denied.

The bitnmask constants used to represent the above definitions within
the acl support attribute are as foll ows:

const ACL4_SUPPORT_ALLOW ACL = 0x00000001
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM ACL = 0x00000008;

5.9.1. ACE type

The semantics of the "type" field follow the descriptions provided
above.

The bitnmask constants used for the type field are as foll ows:

const ACE4A_ACCESS _ALLONED_ACE_TYPE = 0x00000000
const ACE4_ACCESS_DEN ED_ACE_TYPE = 0x00000001;
const ACE4_SYSTEM AUDI T_ACE_TYPE = 0x00000002;
const ACEA_SYSTEM ALARM ACE_TYPE = 0x00000003;

5.9.2. ACE flag
The "flag" field contains values based on the foll ow ng descriptions.
ACE4_FI LE_I NHERI T_ACE

Can be placed on a directory and indicates that this ACE should be
added to each new non-directory file created.

ACE4_DI RECTORY_| NHERI T_ACE

Can be placed on a directory and indicates that this ACE should be
added to each new directory created.

ACE4_| NHERI T_ONLY_ACE

Can be placed on a directory but does not apply to the directory,
only to newmy created files/directories as specified by the above two
flags.

ACE4_NO_PROPAGATE_| NHERI T_ACE

Shepler, et al. St andards Track [Page 41]

RFC 3010 NFS version 4 Protocol Decenber 2000

Can be placed on a directory. Nornally when a new directory is
created and an ACE exists on the parent directory which is narked
ACL4_ DI RECTORY_I NHERI T_ACE, two ACEs are placed on the new directory.
One for the directory itself and one which is an inheritable ACE for
newWly created directories. This flag tells the server to not place
an ACE on the newWy created directory which is inheritable by
subdirectories of the created directory.

ACE4_SUCCESSFUL_ACCESS ACE_FLAG
ACL4_FAl LED ACCESS_ACE_FLAG

Both indicate for AUDIT and ALARM which state to log the event. On
every ACCESS or OPEN call which occurs on a file or directory which
has an ACL that is of type ACE4_SYSTEM AUDI T_ACE TYPE or
ACE4_SYSTEM ALARM ACE TYPE, the attenpted access is conpared to the
acedmask of these ACLs. If the access is a subset of ace4mask and the
identifier match, an AUDIT trail or an ALARMis generated. By
default this happens regardl ess of the success or failure of the
ACCESS or OPEN call.

The flag ACE4_SUCCESSFUL_ACCESS ACE _FLAG only produces the AUDI T or
ALARM i f the ACCESS or OPEN call is successful. The

ACE4 _FAI LED ACCESS ACE FLAG causes the ALARMor AUDIT if the ACCESS
or OPEN call fails.

ACE4_| DENTI FI ER_GROUP

Indicates that the "who" refers to a GROUP as defined under Uni x.

The bitnmask constants used for the flag field are as foll ows:

const ACE4_FILE_| NHERI T_ACE = 0x00000001;
const ACE4_DI RECTORY_| NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE | NHERI T_ACE = 0x00000004;
const ACE4_| NHERI T_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS ACE_FLAG = 0x00000010;
const ACEA_FAI LED ACCESS ACE FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040;

Shepler, et al. St andards Track [Page 42]

5.9.3.

RFC 3010

ACE Access Mask

NFS version 4 Protoco

Decenber

The access_mask field contains val ues based on the follow ng:

Access Descri ption

READ DATA Pernission to read the data of the file

LI ST_DI RECTORY Permi ssion to list the contents of a
directory

VRl TE_DATA Permission to nodify the file' s data

ADD FI LE Perm ssion to add a new file to a

APPEND_DATA
ADD_SUBDI RECTORY

READ NAMED ATTRS
WRI TE_NAMED_ATTRS

EXECUTE
DELETE_CHI LD

READ_ATTRI BUTES

VRl TE_ATTRI BUTES

DELETE
READ ACL

WRI TE_ACL
VRl TE_OAKRER
SYNCHRONI ZE

directory
Per m ssi on
Per m ssi on
directory
Per m ssi on
of afile
Per m ssi on
of afile
Per m ssi on
Per mi ssi on

to
to

to

to

to
to

append data to a file
create a subdirectory to a

read the naned attri butes
wite the naned attri butes

execute a file
delete a file or directory

within a directory

The ability to read basic attributes
(non-acls) of a file

Perni ssion to change basic attributes
(non-acls) of a file

Per m ssi on
Per m ssi on
Per m ssi on
Per m ssi on
Per m ssi on

to
to
to
to
to

Delete the file

Read the ACL

Wite the ACL

change t he owner

access file locally at the

server with synchronous reads and wites

2000

The bitmask constants used for the access mask field are as foll ows:

const
const
const
const
const
const
const
const
const
const
const
const

Shepl er,

ACE4_READ DATA

ACE4_LI ST_DI RECTORY
ACE4_\\RI TE_DATA
ACE4_ADD FI LE
ACE4_APPEND_DATA
ACE4_ADD_SUBDI RECTORY
ACE4_READ NAVED ATTRS
ACE4_W\RI TE_NAMED ATTRS
ACE4_EXECUTE
ACE4_DELETE_CHI LD
ACE4_READ ATTRI BUTES
ACE4_W\RI TE_ATTRI BUTES

et al. St andar ds

0x00000001;
0x00000001;
0x00000002;
0x00000002;
0x00000004;
0x00000004;
0x00000008;
0x00000010;
0x00000020;
0x00000040;
0x00000080;
0x00000100;

Tr ack

[Page 43]

RFC 3010 NFS version 4 Protocol Decenber 2000

const ACE4_DELETE = 0x00010000;
const ACE4 _READ ACL = 0x00020000;
const ACE4_VWRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OMNER = 0x00080000;
const ACE4_SYNCHRONI ZE = 0x00100000;

5.9.4. ACE who

There are several special identifiers ("who") which need to be
under st ood universally. Sonme of these identifiers cannot be

under st ood when an NFS client accesses the server, but have neani ng
when a | ocal process accesses the file. The ability to display and
nodi fy these pernissions is pernitted over NFS.

Who Description

" ONNER' The owner of the file.

" GROUP" The group associated with the file.

" EVERYONE" The wor | d.

" | NTERACTI VE" Accessed froman interactive terninal.

" NETWORK" Accessed via the network.

" DI ALUP" Accessed as a dialup user to the server.

" BATCH' Accessed from a batch job.

" ANONYMOUS" Accessed wi t hout any aut hentication.

" AUTHENTI CATED" Any aut henticated user (opposite of
ANONYMOUS)

" SERVI CE" Access froma system servi ce.

To avoid conflict, these special identifiers are distinguish by an
appended "@ and should appear in the form"xxxx@ (note: no donain
nane after the "@). For exanple: ANONYMOUS@

6. File System Mgration and Replication

Wth the use of the recommended attribute "fs_|ocations”, the NFS
version 4 server has a nethod of providing file systemmigration or
replication services. For the purposes of migration and replication,
afile systemwi |l be defined as all files that share a given fsid
(both major and minor val ues are the sane).

The fs_locations attribute provides a list of file system| ocations.
These | ocations are specified by providing the server nanme (either
DNS domain or | P address) and the path name representing the root of
the file system Depending on the type of service being provided,
the list will provide a new |ocation or a set of alternate |ocations
for the file system The client will use this information to
redirect its requests to the new server.

Shepler, et al. St andards Track [Page 44]

RFC 3010 NFS version 4 Protocol Decenber 2000

6.

6.

1

2.

Replication

It is expected that file systemreplication will be used in the case
of read-only data. Typically, the file systemw Il be replicated on
two or nore servers. The fs_|locations attribute will provide the
list of these locations to the client. On first access of the file
system the client should obtain the value of the fs_|ocations
attribute. If, in the future, the client finds the server
unresponsive, the client may attenpt to use another server specified
by fs_locations.

If applicable, the client nust take the appropriate steps to recover
valid filehandles fromthe new server. This is described in nore
detail in the follow ng sections.

M gration

File systemmigration is used to nove a file system from one server
to another. Magration is typically used for a file systemthat is
witable and has a single copy. The expected use of migration is for
| oad bal ancing or general resource reallocation. The protocol does
not specify howthe file systemw Il be noved between servers. This
server-to-server transfer nmechanismis left to the server

i npl ementor. However, the nmethod used to conmunicate the migration
event between client and server is specified here.

Once the servers participating in the nmigration have conpl eted the
move of the file system the error NFS4ERR MOVED will be returned for
subsequent requests received by the original server. The

NFSAERR MOVED error is returned for all operations except GETATTR
Upon receiving the NFS4ERR MOVED error, the client will obtain the
val ue of the fs_locations attribute. The client will then use the
contents of the attribute to redirect its requests to the specified
server. To facilitate the use of CGETATTR, operations such as PUTFH
nmust al so be accepted by the server for the migrated file systenis
filehandles. Note that if the server returns NFS4ERR MOVED, the
server MJST support the fs |ocations attribute.

If the client requests nore attributes than just fs_locations, the
server may return fs_locations only. This is to be expected since
the server has migrated the file systemand may not have a net hod of
obtai ning additional attribute data.

The server inplenentor needs to be careful in developing a nmigration
solution. The server nust consider all of the state information
clients may have outstanding at the server. This includes but is not
limted to | ocking/share state, del egation state, and asynchronous

Shepler, et al. St andards Track [Page 45]

RFC 3010 NFS version 4 Protocol Decenber 2000

file wites which are represented by WRITE and COWM T verifiers. The
server should strive to minimze the inpact on its clients during and
after the migration process.

6.3. Interpretation of the fs_|locations Attribute
The fs_location attribute is structured in the follow ng way:

struct fs_location {

utf8string server <>;
pat hnane4 r oot pat h;
i
struct fs_locations {
pat hnane4 fs_root;
fs_location | ocati ons<>;
b

The fs_location struct is used to represent the location of a file
system by providing a server nanme and the path to the root of the
file system For a multi-homed server or a set of servers that use
the sane rootpath, an array of server nanes may be provided. An
entry in the server array is an UTF8 string and represents one of a
tradi tional DNS host nane, |Pv4 address, or IPv6 address. It is not
a requirenent that all servers that share the sane rootpath be |listed
in one fs location struct. The array of server nanmes is provided for
conveni ence. Servers that share the sanme rootpath nay also be listed
in separate fs_location entries in the fs_|locations attribute.

The fs_locations struct and attribute then contains an array of

| ocations. Since the nane space of each server may be constructed
differently, the "fs root" field is provided. The path represented
by fs_root represents the location of the file systemin the server’s
nane space. Therefore, the fs_root path is only associated with the
server fromwhich the fs_locations attribute was obtai ned. The

fs root path is neant to aid the client in locating the file system
at the various servers |isted.

As an exanple, there is a replicated file systemlocated at two
servers (servA and servB). At servA the file systemis |ocated at
path "/a/b/c". At servB the file systemis located at path "/x/y/z".
In this exanple the client accesses the file systemfirst at servA
with a nmulti-conponent |ookup path of "/a/b/c/d". Since the client
used a nulti-conponent |ookup to obtain the filehandle at "/a/b/c/d"
it is unaware that the file systenis root is located in servA's nanme
space at "/al/b/c". Wen the client switches to servB, it will need
to determine that the directory it first referenced at servA is now
represented by the path "/x/y/z/d" on servB. To facilitate this, the

Shepler, et al. St andards Track [Page 46]

RFC 3010 NFS version 4 Protocol Decenber 2000

fs locations attribute provided by servA would have a fs_root val ue
of "/alb/c" and two entries in fs_location. One entry in fs_location
will be for itself (servA) and the other will be for servB with a
path of "/x/yl/z". Wth this information, the client is able to
substitute "/x/y/z" for the "/a/b/c" at the beginning of its access
pat h and construct "/x/y/z/d" to use for the new server

6.4. Filehandl e Recovery for Mgration or Replication

Filehandles for file systens that are replicated or m grated
general ly have the sanme semantics as for file systens that are not
replicated or mgrated. For exanple, if a file systemhas persistent
filehandles and it is mgrated to another server, the fil ehandle
values for the file systemw |l be valid at the new server

For volatile filehandles, the servers involved likely do not have a
mechanismto transfer filehandl e format and content between

t hensel ves. Therefore, a server nmay have difficulty in determ ning
if avolatile filehandle froman old server should return an error of
NFS4ERR_FHEXPI RED. Therefore, the client is informed, with the use
of the fh_expire_type attribute, whether volatile filehandles wll
expire at the mgration or replication event. |If the bit

FHA_ VOL_M GRATION is set in the fh_expire_type attribute, the client
nmust treat the volatile filehandle as if the server had returned the
NFSAERR FHEXPI RED error. At the migration or replication event in
the presence of the FH4 VOL_ M GRATION bit, the client will not
present the original or old volatile file handle to the new server
The client will start its comunication with the new server by
recovering its filehandles using the saved file nanes.

7. NFS Server Name Space
7.1. Server Exports

On a UNI X server the name space describes all the files reachabl e by
pat hnanes under the root directory or "/". On a Wndows NT server
the nane space constitutes all the files on disks named by mapped
disk letters. NFS server adninistrators rarely nmake the entire
server’'s file system nane space available to NFS clients. Mre often
portions of the name space are nmade avail able via an "export"
feature. In previous versions of the NFS protocol, the root
filehandl e for each export is obtained through the MOUNT protocol
the client sends a string that identifies the export of nane space
and the server returns the root filehandle for it. The MOUNT
protocol supports an EXPORTS procedure that will enunerate the
server’'s exports

Shepler, et al. St andards Track [Page 47]

RFC 3010 NFS version 4 Protocol Decenber 2000

7.2. Browsing Exports

The NFS version 4 protocol provides a root filehandle that clients
can use to obtain filehandles for these exports via a nulti-conponent
LOOKUP. A conmon user experience is to use a graphical user
interface (perhaps a file "Qpen" dialog window) to find a file via
progressive browsing through a directory tree. The client nust be
able to nove fromone export to another export via single-conponent,
progressi ve LOOKUP operations.

This style of browsing is not well supported by the NFS version 2 and
3 protocols. The client expects all LOOKUP operations to renmin
within a single server file system For exanple, the device
attribute will not change. This prevents a client fromtaking nane
space paths that span exports

An autonmounter on the client can obtain a snapshot of the server’s
nane space using the EXPORTS procedure of the MOUNT protocol. [If it
under stands the server’s pathnane syntax, it can create an i mage of
the server’s nane space on the client. The parts of the name space
that are not exported by the server are filled in with a "pseudo file
systent that allows the user to browse fromone nounted file system
to another. There is a drawback to this representation of the
server’s nane space on the client: it is static. |If the server

adm ni strator adds a new export the client will be unaware of it.

7.3. Server Pseudo File System

NFS version 4 servers avoid this name space inconsistency by
presenting all the exports within the framework of a single server
nane space. An NFS version 4 client uses LOOKUP and READDI R
operations to browse seam essly fromone export to another. Portions
of the server nane space that are not exported are bridged via a
"pseudo file systent that provides a view of exported directories
only. A pseudo file systemhas a unique fsid and behaves like a
normal, read only file system

Based on the construction of the server’s nane space, it is possible
that multiple pseudo file systems may exist. For exanpl e,

/a pseudo file system
/alb real file system
/alblc pseudo file system

lalblcld real file system

Each of the pseudo file systens are consider separate entities and
therefore will have a unique fsid.

Shepler, et al. St andards Track [Page 48]

RFC 3010 NFS version 4 Protocol Decenber 2000

7.4. Miltiple Roots

The DOS and W ndows operating environnents are sonetines described as
having "multiple roots". File systens are commonly represented as
disk letters. MacOS represents file systenms as top |level nanmes. NFS
version 4 servers for these platforns can construct a pseudo file
system above these root nanes so that disk letters or vol une nanes
are sinply directory nanes in the pseudo root.

7.5. Filehandle Volatility

The nature of the server’s pseudo file systemis that it is a |logica
representation of file systen(s) available fromthe server

Therefore, the pseudo file systemis nost |ikely constructed

dynami cally when the server is first instantiated. It is expected
that the pseudo file system may not have an on di sk counterpart from
whi ch persistent fil ehandl es could be constructed. Even though it is
preferabl e that the server provide persistent filehandles for the
pseudo file system the NFS client should expect that pseudo file
system fil ehandl es are volatile. This can be confirmed by checking
the associated "fh_expire_type" attribute for those filehandles in
question. |If the filehandles are volatile, the NFS client nust be
prepared to recover a filehandl e value (e.g. with a nmulti-conponent
LOOKUP) when receiving an error of NFS4ERR FHEXPI RED.

7.6. Exported Root

If the server’s root file systemis exported, one night conclude that
a pseudo-file systemis not needed. This would be wong. Assune the
following file systens on a server

/ di skl (exported)

/a di sk2 (not exported)
/alb di sk3 (exported)

Because disk2 is not exported, disk3 cannot be reached with sinple
LOOKUPs. The server nust bridge the gap with a pseudo-file system

7.7. Munt Point Crossing
The server file systemenvironnment may be constructed in such a way
that one file systemcontains a directory which is 'covered or
nmount ed upon by a second file system For exanple:

lalb (file system 1)
/alblc/d (file system 2)

Shepler, et al. St andards Track [Page 49]

RFC 3010 NFS version 4 Protocol Decenber 2000

The pseudo file systemfor this server may be constructed to | ook

I'ike:

/ (pl ace hol der/ not export ed)

/alb (file system 1)

lalblcld (file system 2)
It is the server's responsibility to present the pseudo file system
that is conplete to the client. |If the client sends a | ookup request
for the path "/al/b/c/d", the server’'s response is the filehandl e of
the file system”/a/b/c/d". In previous versions of the NFS

protocol, the server would respond with the directory "/a/b/c/d"
within the file system"/a/b".

The NFS client will be able to determine if it crosses a server nount
poi nt by a change in the value of the "fsid" attribute.

7.8. Security Policy and Name Space Presentation

The application of the server’s security policy needs to be carefully
considered by the inplementor. One may choose to linmit the
viewability of portions of the pseudo file system based on the
server’s perception of the client’s ability to authenticate itself
properly. However, with the support of nultiple security nechani sns
and the ability to negotiate the appropriate use of these nechani sns,
the server is unable to properly deternine if a client will be able
to authenticate itself. |If, based on its policies, the server
chooses to linmt the contents of the pseudo file system the server
may effectively hide file systens froma client that may otherw se
have | egitinmate access.

8. File Locking and Share Reservations
Integrating locking into the NFS protocol necessarily causes it to be
state-full. Wth the inclusion of "share" file | ocks the protoco
becones substantially nore dependent on state than the traditiona
conbi nation of NFS and NLM [XNFS]. There are three conponents to
maki ng this state manageabl e:
0 Cear division between client and server

0 Ability to reliably detect inconsistency in state between client
and server

o Sinple and robust recovery nechani sns

Shepler, et al. St andards Track [Page 50]

RFC 3010 NFS version 4 Protocol Decenber 2000

In this nodel, the server owns the state information. The client
conmuni cates its view of this state to the server as needed. The
client is also able to detect inconsistent state before nodifying a
file.

To support Wn32 "share" locks it is necessary to atonically OPEN or
CREATE files. Having a separate share/unshare operation would not
al l ow correct inplenentation of the Wn32 OpenFile API. |n order to
correctly inplenent share semantics, the previous NFS protoco
mechani sms used when a file is opened or created (LOOKUP, CREATE
ACCESS) need to be replaced. The NFS version 4 protocol has an OPEN
operation that subsunes the functionality of LOOKUP, CREATE, and
ACCESS. However, because many operations require a filehandle, the
traditional LOOKUP is preserved to map a file name to fil ehandle

wi t hout establishing state on the server. The policy of granting
access or nodifying files is managed by the server based on the
client’s state. These nmechani snms can inpl enent policy ranging from
advisory only locking to full nandatory | ocking.

8.1. Locking

It is assuned that manipulating a lock is rare when conpared to READ
and WRI TE operations. It is also assuned that crashes and network
partitions are relatively rare. Therefore it is inportant that the
READ and WRI TE operations have a |ightwei ght nmechanismto indicate if
they possess a held lock. A lock request contains the heavywei ght
information required to establish a | ock and uni quely define the Iock
owner .

The follow ng sections describe the transition fromthe heavy wei ght
information to the eventual stateid used for nost client and server
| ocki ng and | ease interactions.

8.1.1. dient ID
For each LOCK request, the client nust identify itself to the server
This is done in such a way as to allow for correct |ock
identification and crash recovery. Client identification is
acconpl i shed with two val ues.
o Awverifier that is used to detect client reboots.
0o A variable length opaque array to uniquely define a client.

For an operating systemthis nmay be a fully qualified host name

or | P address. For a user level NFS client it nmay additionally
contain a process id or other unique sequence.

Shepler, et al. St andards Track [Page 51]

RFC 3010 NFS version 4 Protocol Decenber 2000

The data structure for the Client ID would then appear as:

struct nfs_client_id {
opaque verifier[4];
opaque i d<>;

}

It is possible through the ms-configuration of a client or the
exi stence of a rogue client that two clients end up using the sane
nfs client_id. This situation is avoided by "negotiating" the

nfs client _id between client and server with the use of the

SETCLI ENTI D and SETCLI ENTI D