pyspark.sql.Catalog.isCached#
- Catalog.isCached(tableName)[source]#
Returns true if the table is currently cached in-memory.
New in version 2.0.0.
- Parameters
- tableNamestr
name of the table to get.
Changed in version 3.4.0: Allow
tableName
to be qualified with catalog name.
- Returns
- bool
Examples
>>> _ = spark.sql("DROP TABLE IF EXISTS tbl1") >>> _ = spark.sql("CREATE TABLE tbl1 (name STRING, age INT) USING parquet") >>> spark.catalog.cacheTable("tbl1") >>> spark.catalog.isCached("tbl1") True
Throw an analysis exception when the table does not exist.
>>> spark.catalog.isCached("not_existing_table") Traceback (most recent call last): ... AnalysisException: ...
Using the fully qualified name for the table.
>>> spark.catalog.isCached("spark_catalog.default.tbl1") True >>> spark.catalog.uncacheTable("tbl1") >>> _ = spark.sql("DROP TABLE tbl1")