root/source4/lib/ldb/common/qsort.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ldb_qsort

   1 /* Copyright (C) 1991,1992,1996,1997,1999,2004 Free Software Foundation, Inc.
   2    This file is part of the GNU C Library.
   3    Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
   4 
   5    The GNU C Library is free software; you can redistribute it and/or
   6    modify it under the terms of the GNU Lesser General Public
   7    License as published by the Free Software Foundation; either
   8    version 2.1 of the License, or (at your option) any later version.
   9 
  10    The GNU C Library is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13    Lesser General Public License for more details.
  14 
  15    You should have received a copy of the GNU Lesser General Public
  16    License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */
  17 
  18 /* If you consider tuning this algorithm, you should consult first:
  19    Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
  20    Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */
  21 
  22 /* Modified to be used in samba4 by
  23  * Simo Sorce <idra@samba.org>          2005
  24  */
  25 
  26 #include "ldb_private.h"
  27 
  28 /* Byte-wise swap two items of size SIZE. */
  29 #define SWAP(a, b, size)                                                      \
  30   do                                                                          \
  31     {                                                                         \
  32       register size_t __size = (size);                                        \
  33       register char *__a = (a), *__b = (b);                                   \
  34       do                                                                      \
  35         {                                                                     \
  36           char __tmp = *__a;                                                  \
  37           *__a++ = *__b;                                                      \
  38           *__b++ = __tmp;                                                     \
  39         } while (--__size > 0);                                               \
  40     } while (0)
  41 
  42 /* Discontinue quicksort algorithm when partition gets below this size.
  43    This particular magic number was chosen to work best on a Sun 4/260. */
  44 #define MAX_THRESH 4
  45 
  46 /* Stack node declarations used to store unfulfilled partition obligations. */
  47 typedef struct
  48   {
  49     char *lo;
  50     char *hi;
  51   } stack_node;
  52 
  53 /* The next 4 #defines implement a very fast in-line stack abstraction. */
  54 /* The stack needs log (total_elements) entries (we could even subtract
  55    log(MAX_THRESH)).  Since total_elements has type size_t, we get as
  56    upper bound for log (total_elements):
  57    bits per byte (CHAR_BIT) * sizeof(size_t).  */
  58 #ifndef CHAR_BIT
  59 #define CHAR_BIT 8
  60 #endif
  61 #define STACK_SIZE      (CHAR_BIT * sizeof(size_t))
  62 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
  63 #define POP(low, high)  ((void) (--top, (low = top->lo), (high = top->hi)))
  64 #define STACK_NOT_EMPTY (stack < top)
  65 
  66 
  67 /* Order size using quicksort.  This implementation incorporates
  68    four optimizations discussed in Sedgewick:
  69 
  70    1. Non-recursive, using an explicit stack of pointer that store the
  71       next array partition to sort.  To save time, this maximum amount
  72       of space required to store an array of SIZE_MAX is allocated on the
  73       stack.  Assuming a 32-bit (64 bit) integer for size_t, this needs
  74       only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
  75       Pretty cheap, actually.
  76 
  77    2. Chose the pivot element using a median-of-three decision tree.
  78       This reduces the probability of selecting a bad pivot value and
  79       eliminates certain extraneous comparisons.
  80 
  81    3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
  82       insertion sort to order the MAX_THRESH items within each partition.
  83       This is a big win, since insertion sort is faster for small, mostly
  84       sorted array segments.
  85 
  86    4. The larger of the two sub-partitions is always pushed onto the
  87       stack first, with the algorithm then concentrating on the
  88       smaller partition.  This *guarantees* no more than log (total_elems)
  89       stack size is needed (actually O(1) in this case)!  */
  90 
  91 void ldb_qsort (void *const pbase, size_t total_elems, size_t size,
     /* [<][>][^][v][top][bottom][index][help] */
  92                 void *opaque, ldb_qsort_cmp_fn_t cmp)
  93 {
  94   register char *base_ptr = (char *) pbase;
  95 
  96   const size_t max_thresh = MAX_THRESH * size;
  97 
  98   if (total_elems == 0)
  99     /* Avoid lossage with unsigned arithmetic below.  */
 100     return;
 101 
 102   if (total_elems > MAX_THRESH)
 103     {
 104       char *lo = base_ptr;
 105       char *hi = &lo[size * (total_elems - 1)];
 106       stack_node stack[STACK_SIZE];
 107       stack_node *top = stack;
 108 
 109       PUSH (NULL, NULL);
 110 
 111       while (STACK_NOT_EMPTY)
 112         {
 113           char *left_ptr;
 114           char *right_ptr;
 115 
 116           /* Select median value from among LO, MID, and HI. Rearrange
 117              LO and HI so the three values are sorted. This lowers the
 118              probability of picking a pathological pivot value and
 119              skips a comparison for both the LEFT_PTR and RIGHT_PTR in
 120              the while loops. */
 121 
 122           char *mid = lo + size * ((hi - lo) / size >> 1);
 123 
 124           if ((*cmp) ((void *) mid, (void *) lo, opaque) < 0)
 125             SWAP (mid, lo, size);
 126           if ((*cmp) ((void *) hi, (void *) mid, opaque) < 0)
 127             SWAP (mid, hi, size);
 128           else
 129             goto jump_over;
 130           if ((*cmp) ((void *) mid, (void *) lo, opaque) < 0)
 131             SWAP (mid, lo, size);
 132         jump_over:;
 133 
 134           left_ptr  = lo + size;
 135           right_ptr = hi - size;
 136 
 137           /* Here's the famous ``collapse the walls'' section of quicksort.
 138              Gotta like those tight inner loops!  They are the main reason
 139              that this algorithm runs much faster than others. */
 140           do
 141             {
 142               while ((*cmp) ((void *) left_ptr, (void *) mid, opaque) < 0)
 143                 left_ptr += size;
 144 
 145               while ((*cmp) ((void *) mid, (void *) right_ptr, opaque) < 0)
 146                 right_ptr -= size;
 147 
 148               if (left_ptr < right_ptr)
 149                 {
 150                   SWAP (left_ptr, right_ptr, size);
 151                   if (mid == left_ptr)
 152                     mid = right_ptr;
 153                   else if (mid == right_ptr)
 154                     mid = left_ptr;
 155                   left_ptr += size;
 156                   right_ptr -= size;
 157                 }
 158               else if (left_ptr == right_ptr)
 159                 {
 160                   left_ptr += size;
 161                   right_ptr -= size;
 162                   break;
 163                 }
 164             }
 165           while (left_ptr <= right_ptr);
 166 
 167           /* Set up pointers for next iteration.  First determine whether
 168              left and right partitions are below the threshold size.  If so,
 169              ignore one or both.  Otherwise, push the larger partition's
 170              bounds on the stack and continue sorting the smaller one. */
 171 
 172           if ((size_t) (right_ptr - lo) <= max_thresh)
 173             {
 174               if ((size_t) (hi - left_ptr) <= max_thresh)
 175                 /* Ignore both small partitions. */
 176                 POP (lo, hi);
 177               else
 178                 /* Ignore small left partition. */
 179                 lo = left_ptr;
 180             }
 181           else if ((size_t) (hi - left_ptr) <= max_thresh)
 182             /* Ignore small right partition. */
 183             hi = right_ptr;
 184           else if ((right_ptr - lo) > (hi - left_ptr))
 185             {
 186               /* Push larger left partition indices. */
 187               PUSH (lo, right_ptr);
 188               lo = left_ptr;
 189             }
 190           else
 191             {
 192               /* Push larger right partition indices. */
 193               PUSH (left_ptr, hi);
 194               hi = right_ptr;
 195             }
 196         }
 197     }
 198 
 199   /* Once the BASE_PTR array is partially sorted by quicksort the rest
 200      is completely sorted using insertion sort, since this is efficient
 201      for partitions below MAX_THRESH size. BASE_PTR points to the beginning
 202      of the array to sort, and END_PTR points at the very last element in
 203      the array (*not* one beyond it!). */
 204 
 205 #define min(x, y) ((x) < (y) ? (x) : (y))
 206 
 207   {
 208     char *const end_ptr = &base_ptr[size * (total_elems - 1)];
 209     char *tmp_ptr = base_ptr;
 210     char *thresh = min(end_ptr, base_ptr + max_thresh);
 211     register char *run_ptr;
 212 
 213     /* Find smallest element in first threshold and place it at the
 214        array's beginning.  This is the smallest array element,
 215        and the operation speeds up insertion sort's inner loop. */
 216 
 217     for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
 218       if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, opaque) < 0)
 219         tmp_ptr = run_ptr;
 220 
 221     if (tmp_ptr != base_ptr)
 222       SWAP (tmp_ptr, base_ptr, size);
 223 
 224     /* Insertion sort, running from left-hand-side up to right-hand-side.  */
 225 
 226     run_ptr = base_ptr + size;
 227     while ((run_ptr += size) <= end_ptr)
 228       {
 229         tmp_ptr = run_ptr - size;
 230         while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, opaque) < 0)
 231           tmp_ptr -= size;
 232 
 233         tmp_ptr += size;
 234         if (tmp_ptr != run_ptr)
 235           {
 236             char *trav;
 237 
 238             trav = run_ptr + size;
 239             while (--trav >= run_ptr)
 240               {
 241                 char c = *trav;
 242                 char *hi, *lo;
 243 
 244                 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
 245                   *hi = *lo;
 246                 *hi = c;
 247               }
 248           }
 249       }
 250   }
 251 }

/* [<][>][^][v][top][bottom][index][help] */