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Chapter 1: A History of Emacs 1

1 A History of Emacs

XEmacs is a powerful, customizable text editor and development environment. It began
as Lucid Emacs, which was in turn derived from GNU Emacs, a program written by Richard
Stallman of the Free Software Foundation. GNU Emacs dates back to the 1970’s, and was
modelled after a package called “Emacs”, written in 1976, that was a set of macros on top of
TECO, an old, old text editor written at MIT on the DEC PDP 10 under one of the earliest time-
sharing operating systems, ITS (Incompatible Timesharing System). (ITS dates back well before
Unix.) ITS, TECO, and Emacs were products of a group of people at MIT who called themselves
“hackers”, who shared an idealistic belief system about the free exchange of information and
were fanatical in their devotion to and time spent with computers. (The hacker subculture dates
back to the late 1950’s at MIT and is described in detail in Steven Levy’s book Hackers. This
book also includes a lot of information about Stallman himself and the development of Lisp, a
programming language developed at MIT that underlies Emacs.)

1.1 Through Version 18

Although the history of the early versions of GNU Emacs is unclear, the history is well-known
from the middle of 1985. A time line is:
• GNU Emacs version 15 (15.34) was released sometime in 1984 or 1985 and shared some

code with a version of Emacs written by James Gosling (the same James Gosling who later
created the Java language).

• GNU Emacs version 16 (first released version was 16.56) was released on July 15, 1985. All
Gosling code was removed due to potential copyright problems with the code.

• version 16.57: released on September 16, 1985.
• versions 16.58, 16.59: released on September 17, 1985.
• version 16.60: released on September 19, 1985. These later version 16’s incorporated patches

from the net, esp. for getting Emacs to work under System V.
• version 17.36 (first official v17 release) released on December 20, 1985. Included a TeX-able

user manual. First official unpatched version that worked on vanilla System V machines.
• version 17.43 (second official v17 release) released on January 25, 1986.
• version 17.45 released on January 30, 1986.
• version 17.46 released on February 4, 1986.
• version 17.48 released on February 10, 1986.
• version 17.49 released on February 12, 1986.
• version 17.55 released on March 18, 1986.
• version 17.57 released on March 27, 1986.
• version 17.58 released on April 4, 1986.
• version 17.61 released on April 12, 1986.
• version 17.63 released on May 7, 1986.
• version 17.64 released on May 12, 1986.
• version 18.24 (a beta version) released on October 2, 1986.
• version 18.30 (a beta version) released on November 15, 1986.
• version 18.31 (a beta version) released on November 23, 1986.
• version 18.32 (a beta version) released on December 7, 1986.
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• version 18.33 (a beta version) released on December 12, 1986.
• version 18.35 (a beta version) released on January 5, 1987.
• version 18.36 (a beta version) released on January 21, 1987.
• January 27, 1987: The Great Usenet Renaming. net.emacs is now comp.emacs.
• version 18.37 (a beta version) released on February 12, 1987.
• version 18.38 (a beta version) released on March 3, 1987.
• version 18.39 (a beta version) released on March 14, 1987.
• version 18.40 (a beta version) released on March 18, 1987.
• version 18.41 (the first “official” release) released on March 22, 1987.
• version 18.45 released on June 2, 1987.
• version 18.46 released on June 9, 1987.
• version 18.47 released on June 18, 1987.
• version 18.48 released on September 3, 1987.
• version 18.49 released on September 18, 1987.
• version 18.50 released on February 13, 1988.
• version 18.51 released on May 7, 1988.
• version 18.52 released on September 1, 1988.
• version 18.53 released on February 24, 1989.
• version 18.54 released on April 26, 1989.
• version 18.55 released on August 23, 1989. This is the earliest version that is still available

by FTP.
• version 18.56 released on January 17, 1991.
• version 18.57 released late January, 1991.
• version 18.58 released ?????.
• version 18.59 released October 31, 1992.

1.2 Lucid Emacs

Lucid Emacs was developed by the (now-defunct) Lucid Inc., a maker of C++ and Lisp
development environments. It began when Lucid decided they wanted to use Emacs as the editor
and cornerstone of their C++ development environment (called “Energize”). They needed many
features that were not available in the existing version of GNU Emacs (version 18.5something),
in particular good and integrated support for GUI elements such as mouse support, multiple
fonts, multiple window-system windows, etc. A branch of GNU Emacs called Epoch, written at
the University of Illinois, existed that supplied many of these features; however, Lucid needed
more than what existed in Epoch. At the time, the Free Software Foundation was working
on version 19 of Emacs (this was sometime around 1991), which was planned to have similar
features, and so Lucid decided to work with the Free Software Foundation. Their plan was to
add features that they needed, and coordinate with the FSF so that the features would get
included back into Emacs version 19.

Delays in the release of version 19 occurred, however (resulting in it finally being released
more than a year after what was initially planned), and Lucid encountered unexpected technical
resistance in getting their changes merged back into version 19, so they decided to release their
own version of Emacs, which became Lucid Emacs 19.0.

The initial authors of Lucid Emacs were Matthieu Devin, Harlan Sexton, and Eric Benson,
and the work was later taken over by Jamie Zawinski, who became “Mr. Lucid Emacs” for
many releases.

A time line for Lucid Emacs/XEmacs is
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• version 19.0 shipped with Energize 1.0, April 1992.
• version 19.1 released June 4, 1992.
• version 19.2 released June 19, 1992.
• version 19.3 released September 9, 1992.
• version 19.4 released January 21, 1993.
• version 19.5 was a repackaging of 19.4 with a few bug fixes and shipped with Energize 2.0.

Never released to the net.
• version 19.6 released April 9, 1993.
• version 19.7 was a repackaging of 19.6 with a few bug fixes and shipped with Energize 2.1.

Never released to the net.
• version 19.8 released September 6, 1993.
• version 19.9 released January 12, 1994.
• version 19.10 released May 27, 1994.
• version 19.11 (first XEmacs) released September 13, 1994.
• version 19.12 released June 23, 1995.
• version 19.13 released September 1, 1995.
• version 19.14 released June 23, 1996.
• version 20.0 released February 9, 1997.
• version 19.15 released March 28, 1997.
• version 20.1 (not released to the net) April 15, 1997.
• version 20.2 released May 16, 1997.
• version 19.16 released October 31, 1997.
• version 20.3 (the first stable version of XEmacs 20.x) released November 30, 1997. version

20.4 released February 28, 1998.

1.3 GNU Emacs 19

About a year after the initial release of Lucid Emacs, the FSF released a beta of their version
of Emacs 19 (referred to here as “GNU Emacs”). By this time, the current version of Lucid
Emacs was 19.6. (Strangely, the first released beta from the FSF was GNU Emacs 19.7.) A
time line for GNU Emacs version 19 is
• version 19.8 (beta) released May 27, 1993.
• version 19.9 (beta) released May 27, 1993.
• version 19.10 (beta) released May 30, 1993.
• version 19.11 (beta) released June 1, 1993.
• version 19.12 (beta) released June 2, 1993.
• version 19.13 (beta) released June 8, 1993.
• version 19.14 (beta) released June 17, 1993.
• version 19.15 (beta) released June 19, 1993.
• version 19.16 (beta) released July 6, 1993.
• version 19.17 (beta) released late July, 1993.
• version 19.18 (beta) released August 9, 1993.
• version 19.19 (beta) released August 15, 1993.
• version 19.20 (beta) released November 17, 1993.
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• version 19.21 (beta) released November 17, 1993.
• version 19.22 (beta) released November 28, 1993.
• version 19.23 (beta) released May 17, 1994.
• version 19.24 (beta) released May 16, 1994.
• version 19.25 (beta) released June 3, 1994.
• version 19.26 (beta) released September 11, 1994.
• version 19.27 (beta) released September 14, 1994.
• version 19.28 (first “official” release) released November 1, 1994.
• version 19.29 released June 21, 1995.
• version 19.30 released November 24, 1995.
• version 19.31 released May 25, 1996.
• version 19.32 released July 31, 1996.
• version 19.33 released August 11, 1996.
• version 19.34 released August 21, 1996.
• version 19.34b released September 6, 1996.

In some ways, GNU Emacs 19 was better than Lucid Emacs; in some ways, worse. Lucid
soon began incorporating features from GNU Emacs 19 into Lucid Emacs; the work was mostly
done by Richard Mlynarik, who had been working on and using GNU Emacs for a long time
(back as far as version 16 or 17).

1.4 GNU Emacs 20

On February 2, 1997 work began on GNU Emacs to integrate Mule. The first release was
made in September of that year.

A timeline for Emacs 20 is
• version 20.1 released September 17, 1997.
• version 20.2 released September 20, 1997.
• version 20.3 released August 19, 1998.

1.5 XEmacs

Around the time that Lucid was developing Energize, Sun Microsystems was developing
their own development environment (called “SPARCWorks”) and also decided to use Emacs.
They joined forces with the Epoch team at the University of Illinois and later with Lucid. The
maintainer of the last-released version of Epoch was Marc Andreessen, but he dropped out
and the Epoch project, headed by Simon Kaplan, lured Chuck Thompson away from a system
administration job to become the primary Lucid Emacs author for Epoch and Sun. Chuck’s area
of specialty became the redisplay engine (he replaced the old Lucid Emacs redisplay engine with
a ported version from Epoch and then later rewrote it from scratch). Sun also hired Ben Wing
(the author of Win-Emacs, a port of Lucid Emacs to Microsoft Windows 3.1) in 1993, for what
was initially a one-month contract to fix some event problems but later became a many-year
involvement, punctuated by a six-month contract with Amdahl Corporation.

In 1994, Sun and Lucid agreed to rename Lucid Emacs to XEmacs (a name not favorable to
either company); the first release called XEmacs was version 19.11. In June 1994, Lucid folded
and Jamie quit to work for the newly formed Mosaic Communications Corp., later Netscape
Communications Corp. (co-founded by the same Marc Andreessen, who had quit his Epoch job
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to work on a graphical browser for the World Wide Web). Chuck then become the primary
maintainer of XEmacs, and put out versions 19.11 through 19.14 in conjunction with Ben. For
19.12 and 19.13, Chuck added the new redisplay and many other display improvements and
Ben added MULE support (support for Asian and other languages) and redesigned most of the
internal Lisp subsystems to better support the MULE work and the various other features being
added to XEmacs. After 19.14 Chuck retired as primary maintainer and Steve Baur stepped in.

Soon after 19.13 was released, work began in earnest on the MULE internationalization code
and the source tree was divided into two development paths. The MULE version was initially
called 19.20, but was soon renamed to 20.0. In 1996 Martin Buchholz of Sun Microsystems took
over the care and feeding of it and worked on it in parallel with the 19.14 development that was
occurring at the same time. After much work by Martin, it was decided to release 20.0 ahead of
19.15 in February 1997. The source tree remained divided until 20.2 when the version 19 source
was finally retired at version 19.16.

In 1997, Sun finally dropped all pretense of support for XEmacs and Martin Buchholz left the
company in November. Since then, and mostly for the previous year, because Steve Baur was
never paid to work on XEmacs, XEmacs has existed solely on the contributions of volunteers
from the Free Software Community. Starting from 1997, Hrvoje Niksic and Kyle Jones have
figured prominently in XEmacs development.

Many attempts have been made to merge XEmacs and GNU Emacs, but they have consis-
tently failed.

A more detailed history is contained in the XEmacs About page.
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2 XEmacs From the Outside

XEmacs appears to the outside world as an editor, but it is really a Lisp environment.
At its heart is a Lisp interpreter; it also “happens” to contain many specialized object types
(e.g. buffers, windows, frames, events) that are useful for implementing an editor. Some of
these objects (in particular windows and frames) have displayable representations, and XEmacs
provides a function redisplay() that ensures that the display of all such objects matches their
internal state. Most of the time, a standard Lisp environment is in a read-eval-print loop – i.e.
“read some Lisp code, execute it, and print the results”. XEmacs has a similar loop:
• read an event
• dispatch the event (i.e. “do it”)
• redisplay

Reading an event is done using the Lisp function next-event, which waits for something
to happen (typically, the user presses a key or moves the mouse) and returns an event object
describing this. Dispatching an event is done using the Lisp function dispatch-event, which
looks up the event in a keymap object (a particular kind of object that associates an event
with a Lisp function) and calls that function. The function “does” what the user has requested
by changing the state of particular frame objects, buffer objects, etc. Finally, redisplay() is
called, which updates the display to reflect those changes just made. Thus is an “editor” born.

Note that you do not have to use XEmacs as an editor; you could just as well make it do your
taxes, compute pi, play bridge, etc. You’d just have to write functions to do those operations
in Lisp.
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3 The Lisp Language

Lisp is a general-purpose language that is higher-level than C and in many ways more powerful
than C. Powerful dialects of Lisp such as Common Lisp are probably much better languages
for writing very large applications than is C. (Unfortunately, for many non-technical reasons
C and its successor C++ have become the dominant languages for application development.
These languages are both inadequate for extremely large applications, which is evidenced by
the fact that newer, larger programs are becoming ever harder to write and are requiring ever
more programmers despite great increases in C development environments; and by the fact
that, although hardware speeds and reliability have been growing at an exponential rate, most
software is still generally considered to be slow and buggy.)

The new Java language holds promise as a better general-purpose development language
than C. Java has many features in common with Lisp that are not shared by C (this is not
a coincidence, since Java was designed by James Gosling, a former Lisp hacker). This will be
discussed more later.

For those used to C, here is a summary of the basic differences between C and Lisp:
1. Lisp has an extremely regular syntax. Every function, expression, and control statement is

written in the form
(func arg1 arg2 ...)

This is as opposed to C, which writes functions as
func(arg1, arg2, ...)

but writes expressions involving operators as (e.g.)
arg1 + arg2

and writes control statements as (e.g.)
while (expr) { statement1; statement2; ... }

Lisp equivalents of the latter two would be
(+ arg1 arg2 ...)

and
(while expr statement1 statement2 ...)

2. Lisp is a safe language. Assuming there are no bugs in the Lisp interpreter/compiler,
it is impossible to write a program that “core dumps” or otherwise causes the machine to
execute an illegal instruction. This is very different from C, where perhaps the most common
outcome of a bug is exactly such a crash. A corollary of this is that the C operation of
casting a pointer is impossible (and unnecessary) in Lisp, and that it is impossible to access
memory outside the bounds of an array.

3. Programs and data are written in the same form. The parenthesis-enclosing form described
above for statements is the same form used for the most common data type in Lisp, the
list. Thus, it is possible to represent any Lisp program using Lisp data types, and for one
program to construct Lisp statements and then dynamically evaluate them, or cause them
to execute.

4. All objects are dynamically typed. This means that part of every object is an indication of
what type it is. A Lisp program can manipulate an object without knowing what type it is,
and can query an object to determine its type. This means that, correspondingly, variables
and function parameters can hold objects of any type and are not normally declared as
being of any particular type. This is opposed to the static typing of C, where variables can
hold exactly one type of object and must be declared as such, and objects do not contain
an indication of their type because it’s implicit in the variables they are stored in. It is
possible in C to have a variable hold different types of objects (e.g. through the use of void
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* pointers or variable-argument functions), but the type information must then be passed
explicitly in some other fashion, leading to additional program complexity.

5. Allocated memory is automatically reclaimed when it is no longer in use. This operation is
called garbage collection and involves looking through all variables to see what memory is
being pointed to, and reclaiming any memory that is not pointed to and is thus “inaccessi-
ble” and out of use. This is as opposed to C, in which allocated memory must be explicitly
reclaimed using free(). If you simply drop all pointers to memory without freeing it, it
becomes “leaked” memory that still takes up space. Over a long period of time, this can
cause your program to grow and grow until it runs out of memory.

6. Lisp has built-in facilities for handling errors and exceptions. In C, when an error occurs,
usually either the program exits entirely or the routine in which the error occurs returns
a value indicating this. If an error occurs in a deeply-nested routine, then every routine
currently called must unwind itself normally and return an error value back up to the next
routine. This means that every routine must explicitly check for an error in all the routines
it calls; if it does not do so, unexpected and often random behavior results. This is an
extremely common source of bugs in C programs. An alternative would be to do a non-
local exit using longjmp(), but that is often very dangerous because the routines that were
exited past had no opportunity to clean up after themselves and may leave things in an
inconsistent state, causing a crash shortly afterwards.
Lisp provides mechanisms to make such non-local exits safe. When an error occurs, a
routine simply signals that an error of a particular class has occurred, and a non-local exit
takes place. Any routine can trap errors occurring in routines it calls by registering an
error handler for some or all classes of errors. (If no handler is registered, a default handler,
generally installed by the top-level event loop, is executed; this prints out the error and
continues.) Routines can also specify cleanup code (called an unwind-protect) that will be
called when control exits from a block of code, no matter how that exit occurs – i.e. even
if a function deeply nested below it causes a non-local exit back to the top level.
Note that this facility has appeared in some recent vintages of C, in particular Visual C++
and other PC compilers written for the Microsoft Win32 API.

7. In Emacs Lisp, local variables are dynamically scoped. This means that if you declare a
local variable in a particular function, and then call another function, that subfunction can
“see” the local variable you declared. This is actually considered a bug in Emacs Lisp and
in all other early dialects of Lisp, and was corrected in Common Lisp. (In Common Lisp,
you can still declare dynamically scoped variables if you want to – they are sometimes useful
– but variables by default are lexically scoped as in C.)

For those familiar with Lisp, Emacs Lisp is modelled after MacLisp, an early dialect of
Lisp developed at MIT (no relation to the Macintosh computer). There is a Common Lisp
compatibility package available for Emacs that provides many of the features of Common Lisp.

The Java language is derived in many ways from C, and shares a similar syntax, but has the
following features in common with Lisp (and different from C):
1. Java is a safe language, like Lisp.
2. Java provides garbage collection, like Lisp.
3. Java has built-in facilities for handling errors and exceptions, like Lisp.
4. Java has a type system that combines the best advantages of both static and dynamic

typing. Objects (except very simple types) are explicitly marked with their type, as in
dynamic typing; but there is a hierarchy of types and functions are declared to accept only
certain types, thus providing the increased compile-time error-checking of static typing.



Chapter 4: XEmacs From the Perspective of Building 11

4 XEmacs From the Perspective of Building

The heart of XEmacs is the Lisp environment, which is written in C. This is contained in
the ‘src/’ subdirectory. Underneath ‘src/’ are two subdirectories of header files: ‘s/’ (header
files for particular operating systems) and ‘m/’ (header files for particular machine types). In
practice the distinction between the two types of header files is blurred. These header files define
or undefine certain preprocessor constants and macros to indicate particular characteristics of
the associated machine or operating system. As part of the configure process, one ‘s/’ file and
one ‘m/’ file is identified for the particular environment in which XEmacs is being built.

XEmacs also contains a great deal of Lisp code. This implements the operations that make
XEmacs useful as an editor as well as just a Lisp environment, and also contains many add-
on packages that allow XEmacs to browse directories, act as a mail and Usenet news reader,
compile Lisp code, etc. There is actually more Lisp code than C code associated with XEmacs,
but much of the Lisp code is peripheral to the actual operation of the editor. The Lisp code all
lies in subdirectories underneath the ‘lisp/’ directory.

The ‘lwlib/’ directory contains C code that implements a generalized interface onto different
X widget toolkits and also implements some widgets of its own that behave like Motif widgets
but are faster, free, and in some cases more powerful. The code in this directory compiles into
a library and is mostly independent from XEmacs.

The ‘etc/’ directory contains various data files associated with XEmacs. Some of them are
actually read by XEmacs at startup; others merely contain useful information of various sorts.

The ‘lib-src/’ directory contains C code for various auxiliary programs that are used in
connection with XEmacs. Some of them are used during the build process; others are used to
perform certain functions that cannot conveniently be placed in the XEmacs executable (e.g. the
‘movemail’ program for fetching mail out of ‘/var/spool/mail’, which must be setgid to ‘mail’
on many systems; and the ‘gnuclient’ program, which allows an external script to communicate
with a running XEmacs process).

The ‘man/’ directory contains the sources for the XEmacs documentation. It is mostly in
a form called Texinfo, which can be converted into either a printed document (by passing it
through TEX) or into on-line documentation called info files.

The ‘info/’ directory contains the results of formatting the XEmacs documentation as info
files, for on-line use. These files are used when you enter the Info system using C-h i or through
the Help menu.

The ‘dynodump/’ directory contains auxiliary code used to build XEmacs on Solaris platforms.
The other directories contain various miscellaneous code and information that is not normally

used or needed.
The first step of building involves running the ‘configure’ program and passing it various

parameters to specify any optional features you want and compiler arguments and such, as
described in the ‘INSTALL’ file. This determines what the build environment is, chooses the
appropriate ‘s/’ and ‘m/’ file, and runs a series of tests to determine many details about your
environment, such as which library functions are available and exactly how they work. (The ‘s/’
and ‘m/’ files only contain information that cannot be conveniently detected in this fashion.) The
reason for running these tests is that it allows XEmacs to be compiled on a much wider variety of
platforms than those that the XEmacs developers happen to be familiar with, including various
sorts of hybrid platforms. This is especially important now that many operating systems give
you a great deal of control over exactly what features you want installed, and allow for easy
upgrading of parts of a system without upgrading the rest. It would be impossible to pre-
determine and pre-specify the information for all possible configurations.

When configure is done running, it generates ‘Makefile’s and the file ‘src/config.h’ (which
describes the features of your system) from template files. You then run ‘make’, which compiles
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the auxiliary code and programs in ‘lib-src/’ and ‘lwlib/’ and the main XEmacs executable
in ‘src/’. The result of compiling and linking is an executable called ‘temacs’, which is not
the final XEmacs executable. ‘temacs’ by itself is not intended to function as an editor or even
display any windows on the screen, and if you simply run it, it will exit immediately. The
‘Makefile’ runs ‘temacs’ with certain options that cause it to initialize itself, read in a number
of basic Lisp files, and then dump itself out into a new executable called ‘xemacs’. This new
executable has been pre-initialized and contains pre-digested Lisp code that is necessary for the
editor to function (this includes most basic Lisp functions, e.g. not, that can be defined in
terms of other Lisp primitives; some initialization code that is called when certain objects, such
as frames, are created; and all of the standard keybindings and code for the actions they result
in). This executable, ‘xemacs’, is the executable that you run to use the XEmacs editor.

Although ‘temacs’ is not intended to be run as an editor, it can, by using the incanta-
tion temacs -batch -l loadup.el run-temacs. This is useful when the dumping procedure
described above is broken, or when using certain program debugging tools such as Purify. These
tools get mighty confused by the tricks played by the XEmacs build process, such as allocation
memory in one process, and freeing it in the next.
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5 XEmacs From the Inside

Internally, XEmacs is quite complex, and can be very confusing. To simplify things, it can be
useful to think of XEmacs as containing an event loop that “drives” everything, and a number
of other subsystems, such as a Lisp engine and a redisplay mechanism. Each of these other
subsystems exists simultaneously in XEmacs, and each has a certain state. The flow of control
continually passes in and out of these different subsystems in the course of normal operation of
the editor.

It is important to keep in mind that, most of the time, the editor is “driven” by the event loop.
Except during initialization and batch mode, all subsystems are entered directly or indirectly
through the event loop, and ultimately, control exits out of all subsystems back up to the event
loop. This cycle of entering a subsystem, exiting back out to the event loop, and starting another
iteration of the event loop occurs once each keystroke, mouse motion, etc.

If you’re trying to understand a particular subsystem (other than the event loop), think
of it as a “daemon” process or “servant” that is responsible for one particular aspect of a
larger system, and periodically receives commands or environment changes that cause it to do
something. Ultimately, these commands and environment changes are always triggered by the
event loop. For example:
• The window and frame mechanism is responsible for keeping track of what windows and

frames exist, what buffers are in them, etc. It is periodically given commands (usually from
the user) to make a change to the current window/frame state: i.e. create a new frame,
delete a window, etc.

• The buffer mechanism is responsible for keeping track of what buffers exist and what text
is in them. It is periodically given commands (usually from the user) to insert or delete
text, create a buffer, etc. When it receives a text-change command, it notifies the redisplay
mechanism.

• The redisplay mechanism is responsible for making sure that windows and frames are dis-
played correctly. It is periodically told (by the event loop) to actually “do its job”, i.e.
snoop around and see what the current state of the environment (mostly of the currently-
existing windows, frames, and buffers) is, and make sure that that state matches what’s
actually displayed. It keeps lots and lots of information around (such as what is actually
being displayed currently, and what the environment was last time it checked) so that it
can minimize the work it has to do. It is also helped along in that whenever a relevant
change to the environment occurs, the redisplay mechanism is told about this, so it has a
pretty good idea of where it has to look to find possible changes and doesn’t have to look
everywhere.

• The Lisp engine is responsible for executing the Lisp code in which most user commands
are written. It is entered through a call to eval or funcall, which occurs as a result of
dispatching an event from the event loop. The functions it calls issue commands to the
buffer mechanism, the window/frame subsystem, etc.

• The Lisp allocation subsystem is responsible for keeping track of Lisp objects. It is given
commands from the Lisp engine to allocate objects, garbage collect, etc.

etc.
The important idea here is that there are a number of independent subsystems each with

its own responsibility and persistent state, just like different employees in a company, and each
subsystem is periodically given commands from other subsystems. Commands can flow from
any one subsystem to any other, but there is usually some sort of hierarchy, with all commands
originating from the event subsystem.

XEmacs is entered in main(), which is in ‘emacs.c’. When this is called the first time (in a
properly-invoked ‘temacs’), it does the following:
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1. It does some very basic environment initializations, such as determining where it and its
directories (e.g. ‘lisp/’ and ‘etc/’) reside and setting up signal handlers.

2. It initializes the entire Lisp interpreter.
3. It sets the initial values of many built-in variables (including many variables that are visible

to Lisp programs), such as the global keymap object and the built-in faces (a face is an
object that describes the display characteristics of text). This involves creating Lisp objects
and thus is dependent on step (2).

4. It performs various other initializations that are relevant to the particular environment it
is running in, such as retrieving environment variables, determining the current date and
the user who is running the program, examining its standard input, creating any necessary
file descriptors, etc.

5. At this point, the C initialization is complete. A Lisp program that was specified on the
command line (usually ‘loadup.el’) is called (temacs is normally invoked as temacs -batch
-l loadup.el dump). ‘loadup.el’ loads all of the other Lisp files that are needed for the
operation of the editor, calls the dump-emacs function to write out ‘xemacs’, and then kills
the temacs process.

When ‘xemacs’ is then run, it only redoes steps (1) and (4) above; all variables already
contain the values they were set to when the executable was dumped, and all memory that was
allocated with malloc() is still around. (XEmacs knows whether it is being run as ‘xemacs’
or ‘temacs’ because it sets the global variable initialized to 1 after step (4) above.) At this
point, ‘xemacs’ calls a Lisp function to do any further initialization, which includes parsing the
command-line (the C code can only do limited command-line parsing, which includes looking for
the ‘-batch’ and ‘-l’ flags and a few other flags that it needs to know about before initialization
is complete), creating the first frame (or window in standard window-system parlance), running
the user’s init file (usually the file ‘.emacs’ in the user’s home directory), etc. The function to
do this is usually called normal-top-level; ‘loadup.el’ tells the C code about this function
by setting its name as the value of the Lisp variable top-level.

When the Lisp initialization code is done, the C code enters the event loop, and stays there for
the duration of the XEmacs process. The code for the event loop is contained in ‘keyboard.c’,
and is called Fcommand_loop_1(). Note that this event loop could very well be written in Lisp,
and in fact a Lisp version exists; but apparently, doing this makes XEmacs run noticeably slower.

Notice how much of the initialization is done in Lisp, not in C. In general, XEmacs tries to
move as much code as is possible into Lisp. Code that remains in C is code that implements the
Lisp interpreter itself, or code that needs to be very fast, or code that needs to do system calls
or other such stuff that needs to be done in C, or code that needs to have access to “forbidden”
structures. (One conscious aspect of the design of Lisp under XEmacs is a clean separation
between the external interface to a Lisp object’s functionality and its internal implementation.
Part of this design is that Lisp programs are forbidden from accessing the contents of the object
other than through using a standard API. In this respect, XEmacs Lisp is similar to modern
Lisp dialects but differs from GNU Emacs, which tends to expose the implementation and allow
Lisp programs to look at it directly. The major advantage of hiding the implementation is that
it allows the implementation to be redesigned without affecting any Lisp programs, including
those that might want to be “clever” by looking directly at the object’s contents and possibly
manipulating them.)

Moving code into Lisp makes the code easier to debug and maintain and makes it much
easier for people who are not XEmacs developers to customize XEmacs, because they can make
a change with much less chance of obscure and unwanted interactions occurring than if they
were to change the C code.
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6 The XEmacs Object System (Abstractly Speaking)

At the heart of the Lisp interpreter is its management of objects. XEmacs Lisp contains
many built-in objects, some of which are simple and others of which can be very complex; and
some of which are very common, and others of which are rarely used or are only used internally.
(Since the Lisp allocation system, with its automatic reclamation of unused storage, is so much
more convenient than malloc() and free(), the C code makes extensive use of it in its internal
operations.)

The basic Lisp objects are

integer 28 bits of precision, or 60 bits on 64-bit machines; the reason for this is described
below when the internal Lisp object representation is described.

float Same precision as a double in C.

cons A simple container for two Lisp objects, used to implement lists and most other
data structures in Lisp.

char An object representing a single character of text; chars behave like integers in many
ways but are logically considered text rather than numbers and have a different read
syntax. (the read syntax for a char contains the char itself or some textual encoding
of it – for example, a Japanese Kanji character might be encoded as ‘^[$(B#&^[(B’
using the ISO-2022 encoding standard – rather than the numerical representation of
the char; this way, if the mapping between chars and integers changes, which is quite
possible for Kanji characters and other extended characters, the same character will
still be created. Note that some primitives confuse chars and integers. The worst
culprit is eq, which makes a special exception and considers a char to be eq to its
integer equivalent, even though in no other case are objects of two different types eq.
The reason for this monstrosity is compatibility with existing code; the separation
of char from integer came fairly recently.)

symbol An object that contains Lisp objects and is referred to by name; symbols are used
to implement variables and named functions and to provide the equivalent of pre-
processor constants in C.

vector A one-dimensional array of Lisp objects providing constant-time access to any of
the objects; access to an arbitrary object in a vector is faster than for lists, but the
operations that can be done on a vector are more limited.

string Self-explanatory; behaves much like a vector of chars but has a different read syntax
and is stored and manipulated more compactly and efficiently.

bit-vector
A vector of bits; similar to a string in spirit.

compiled-function
An object describing compiled Lisp code, known as byte code.

subr An object describing a Lisp primitive.

Note that there is no basic “function” type, as in more powerful versions of Lisp (where it’s
called a closure). XEmacs Lisp does not provide the closure semantics implemented by Common
Lisp and Scheme. The guts of a function in XEmacs Lisp are represented in one of four ways: a
symbol specifying another function (when one function is an alias for another), a list containing
the function’s source code, a bytecode object, or a subr object. (In other words, given a symbol
specifying the name of a function, calling symbol-function to retrieve the contents of the
symbol’s function cell will return one of these types of objects.)

XEmacs Lisp also contains numerous specialized objects used to implement the editor:
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buffer Stores text like a string, but is optimized for insertion and deletion and has certain
other properties that can be set.

frame An object with various properties whose displayable representation is a window in
window-system parlance.

window A section of a frame that displays the contents of a buffer; often called a pane in
window-system parlance.

window-configuration
An object that represents a saved configuration of windows in a frame.

device An object representing a screen on which frames can be displayed; equivalent to a
display in the X Window System and a TTY in character mode.

face An object specifying the appearance of text or graphics; it contains characteristics
such as font, foreground color, and background color.

marker An object that refers to a particular position in a buffer and moves around as text
is inserted and deleted to stay in the same relative position to the text around it.

extent Similar to a marker but covers a range of text in a buffer; can also specify properties
of the text, such as a face in which the text is to be displayed, whether the text is
invisible or unmodifiable, etc.

event Generated by calling next-event and contains information describing a particu-
lar event happening in the system, such as the user pressing a key or a process
terminating.

keymap An object that maps from events (described using lists, vectors, and symbols rather
than with an event object because the mapping is for classes of events, rather than
individual events) to functions to execute or other events to recursively look up;
the functions are described by name, using a symbol, or using lists to specify the
function’s code.

glyph An object that describes the appearance of an image (e.g. pixmap) on the screen;
glyphs can be attached to the beginning or end of extents and in some future version
of XEmacs will be able to be inserted directly into a buffer.

process An object that describes a connection to an externally-running process.

There are some other, less-commonly-encountered general objects:

hashtable
An object that maps from an arbitrary Lisp object to another arbitrary Lisp object,
using hashing for fast lookup.

obarray A limited form of hashtable that maps from strings to symbols; obarrays are used
to look up a symbol given its name and are not actually their own object type but
are kludgily represented using vectors with hidden fields (this representation derives
from GNU Emacs).

specifier
A complex object used to specify the value of a display property; a default value is
given and different values can be specified for particular frames, buffers, windows,
devices, or classes of device.

char-table
An object that maps from chars or classes of chars to arbitrary Lisp objects; inter-
nally char tables use a complex nested-vector representation that is optimized to
the way characters are represented as integers.
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range-table
An object that maps from ranges of integers to arbitrary Lisp objects.

And some strange special-purpose objects:
charset
coding-system

Objects used when MULE, or multi-lingual/Asian-language, support is enabled.
color-instance
font-instance
image-instance

An object that encapsulates a window-system resource; instances are mostly used
internally but are exposed on the Lisp level for cleanness of the specifier model and
because it’s occasionally useful for Lisp program to create or query the properties
of instances.

subwindow
An object that encapsulate a subwindow resource, i.e. a window-system child win-
dow that is drawn into by an external process; this object should be integrated into
the glyph system but isn’t yet, and may change form when this is done.

tooltalk-message
tooltalk-pattern

Objects that represent resources used in the ToolTalk interprocess communication
protocol.

toolbar-button
An object used in conjunction with the toolbar.

x-resource
An object that encapsulates certain miscellaneous resources in the X window system,
used only when Epoch support is enabled.

And objects that are only used internally:
opaque A generic object for encapsulating arbitrary memory; this allows you the generality

of malloc() and the convenience of the Lisp object system.
lstream A buffering I/O stream, used to provide a unified interface to anything that can

accept output or provide input, such as a file descriptor, a stdio stream, a chunk
of memory, a Lisp buffer, a Lisp string, etc.; it’s a Lisp object to make its memory
management more convenient.

char-table-entry
Subsidiary objects in the internal char-table representation.

extent-auxiliary
menubar-data
toolbar-data

Various special-purpose objects that are basically just used to encapsulate memory
for particular subsystems, similar to the more general “opaque” object.

symbol-value-forward
symbol-value-buffer-local
symbol-value-varalias
symbol-value-lisp-magic

Special internal-only objects that are placed in the value cell of a symbol to indicate
that there is something special with this variable – e.g. it has no value, it mirrors
another variable, or it mirrors some C variable; there is really only one kind of
object, called a symbol-value-magic, but it is sort-of halfway kludged into semi-
different object types.



18 XEmacs Internals Manual

Some types of objects are permanent, meaning that once created, they do not disappear
until explicitly destroyed, using a function such as delete-buffer, delete-window, delete-
frame, etc. Others will disappear once they are not longer used, through the garbage collection
mechanism. Buffers, frames, windows, devices, and processes are among the objects that are
permanent. Note that some objects can go both ways: Faces can be created either way; extents
are normally permanent, but detached extents (extents not referring to any text, as happens
to some extents when the text they are referring to is deleted) are temporary. Note that some
permanent objects, such as faces and coding systems, cannot be deleted. Note also that windows
are unique in that they can be undeleted after having previously been deleted. (This happens
as a result of restoring a window configuration.)

Note that many types of objects have a read syntax, i.e. a way of specifying an object of
that type in Lisp code. When you load a Lisp file, or type in code to be evaluated, what really
happens is that the function read is called, which reads some text and creates an object based
on the syntax of that text; then eval is called, which possibly does something special; then
this loop repeats until there’s no more text to read. (eval only actually does something special
with symbols, which causes the symbol’s value to be returned, similar to referencing a variable;
and with conses [i.e. lists], which cause a function invocation. All other values are returned
unchanged.)

The read syntax
17297

converts to an integer whose value is 17297.
1.983e-4

converts to a float whose value is 1.983e-4, or .0001983.
?b

converts to a char that represents the lowercase letter b.
?^[$(B#&^[(B

(where ‘^[’ actually is an ‘ESC’ character) converts to a particular Kanji character when
using an ISO2022-based coding system for input. (To decode this gook: ‘ESC’ begins an escape
sequence; ‘ESC $ (’ is a class of escape sequences meaning “switch to a 94x94 character set”; ‘ESC
$ ( B’ means “switch to Japanese Kanji”; ‘#’ and ‘&’ collectively index into a 94-by-94 array of
characters [subtract 33 from the ASCII value of each character to get the corresponding index];
‘ESC (’ is a class of escape sequences meaning “switch to a 94 character set”; ‘ESC (B’ means
“switch to US ASCII”. It is a coincidence that the letter ‘B’ is used to denote both Japanese
Kanji and US ASCII. If the first ‘B’ were replaced with an ‘A’, you’d be requesting a Chinese
Hanzi character from the GB2312 character set.)

"foobar"

converts to a string.
foobar

converts to a symbol whose name is "foobar". This is done by looking up the string equiva-
lent in the global variable obarray, whose contents should be an obarray. If no symbol is found,
a new symbol with the name "foobar" is automatically created and added to obarray; this
process is called interning the symbol.

(foo . bar)

converts to a cons cell containing the symbols foo and bar.
(1 a 2.5)

converts to a three-element list containing the specified objects (note that a list is actually a
set of nested conses; see the XEmacs Lisp Reference).

[1 a 2.5]

converts to a three-element vector containing the specified objects.
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#[... ... ... ...]

converts to a compiled-function object (the actual contents are not shown since they are not
relevant here; look at a file that ends with ‘.elc’ for examples).

#*01110110

converts to a bit-vector.
#s(range-table ... ...)

converts to a range table (the actual contents are not shown).
#s(char-table ... ...)

converts to a char table (the actual contents are not shown). (Note that the #s syntax is the
general syntax for structures, which are not really implemented in XEmacs Lisp but should be.)

When an object is printed out (using print or a related function), the read syntax is used,
so that the same object can be read in again.

The other objects do not have read syntaxes, usually because it does not really make sense
to create them in this fashion (i.e. processes, where it doesn’t make sense to have a subprocess
created as a side effect of reading some Lisp code), or because they can’t be created at all (e.g.
subrs). Permanent objects, as a rule, do not have a read syntax; nor do most complex objects,
which contain too much state to be easily initialized through a read syntax.
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7 How Lisp Objects Are Represented in C

Lisp objects are represented in C using a 32- or 64-bit machine word (depending on the
processor; i.e. DEC Alphas use 64-bit Lisp objects and most other processors use 32-bit Lisp
objects). The representation stuffs a pointer together with a tag, as follows:

[ 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ]
[ 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 ]

^ <---> <------------------------------------------------------>
| tag a pointer to a structure, or an integer
|
‘---> mark bit

The tag describes the type of the Lisp object. For integers and chars, the lower 28 bits contain
the value of the integer or char; for all others, the lower 28 bits contain a pointer. The mark
bit is used during garbage-collection, and is always 0 when garbage collection is not happening.
Many macros that extract out parts of a Lisp object expect that the mark bit is 0, and will
produce incorrect results if it’s not. (The way that garbage collection works, basically, is that it
loops over all places where Lisp objects could exist – this includes all global variables in C that
contain Lisp objects [including Vobarray, the C equivalent of obarray; through this, all Lisp
variables will get marked], plus various other places – and recursively scans through the Lisp
objects, marking each object it finds by setting the mark bit. Then it goes through the lists of
all objects allocated, freeing the ones that are not marked and turning off the mark bit of the
ones that are marked.)

Lisp objects use the typedef Lisp_Object, but the actual C type used for the Lisp object
can vary. It can be either a simple type (long on the DEC Alpha, int on other machines) or a
structure whose fields are bit fields that line up properly (actually, a union of structures that’s
used). Generally the simple integral type is preferable because it ensures that the compiler will
actually use a machine word to represent the object (some compilers will use more general and
less efficient code for unions and structs even if they can fit in a machine word). The union type,
however, has the advantage of stricter type checking (if you accidentally pass an integer where
a Lisp object is desired, you get a compile error), and it makes it easier to decode Lisp objects
when debugging. The choice of which type to use is determined by the presence or absence of
the preprocessor constant USE_UNION_TYPE.

Note that there are only eight types that the tag can represent, but many more actual types
than this. This is handled by having one of the tag types specify a meta-type called a record;
for all such objects, the first four bytes of the pointed-to structure indicate what the actual type
is.

Note also that having 28 bits for pointers and integers restricts a lot of things to 256 megabytes
of memory. (Basically, enough pointers and indices and whatnot get stuffed into Lisp objects
that the total amount of memory used by XEmacs can’t grow above 256 megabytes. In older
versions of XEmacs and GNU Emacs, the tag was 5 bits wide, allowing for 32 types, which
was more than the actual number of types that existed at the time, and no “record” type was
necessary. However, this limited the editor to 64 megabytes total, which some users who edited
large files might conceivably exceed.)

Also, note that there is an implicit assumption here that all pointers are low enough that
the top bits are all zero and can just be chopped off. On standard machines that allocate
memory from the bottom up (and give each process its own address space), this works fine.
Some machines, however, put the data space somewhere else in memory (e.g. beginning at
0x80000000). Those machines cope by defining DATA_SEG_BITS in the corresponding ‘m/’ or ‘s/’
file to the proper mask. Then, pointers retrieved from Lisp objects are automatically OR’ed
with this value prior to being used.
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A corollary of the previous paragraph is that (pointers to) stack-allocated structures cannot
be put into Lisp objects. The stack is generally located near the top of memory; if you put such
a pointer into a Lisp object, it will get its top bits chopped off, and you will lose.

Various macros are used to construct Lisp objects and extract the components. Macros of
the form XINT(), XCHAR(), XSTRING(), XSYMBOL(), etc. mask out the pointer/integer field and
cast it to the appropriate type. All of the macros that construct pointers will OR with DATA_
SEG_BITS if necessary. XINT() needs to be a bit tricky so that negative numbers are properly
sign-extended: Usually it does this by shifting the number four bits to the left and then four bits
to the right. This assumes that the right-shift operator does an arithmetic shift (i.e. it leaves
the most-significant bit as-is rather than shifting in a zero, so that it mimics a divide-by-two
even for negative numbers). Not all machines/compilers do this, and on the ones that don’t, a
more complicated definition is selected by defining EXPLICIT_SIGN_EXTEND.

Note that when ERROR_CHECK_TYPECHECK is defined, the extractor macros become more com-
plicated – they check the tag bits and/or the type field in the first four bytes of a record type
to ensure that the object is really of the correct type. This is great for catching places where
an incorrect type is being dereferenced – this typically results in a pointer being dereferenced as
the wrong type of structure, with unpredictable (and sometimes not easily traceable) results.

There are similar XSETTYPE() macros that construct a Lisp object. These macros are of
the form XSETTYPE (lvalue, result), i.e. they have to be a statement rather than just used in
an expression. The reason for this is that standard C doesn’t let you “construct” a structure
(but GCC does). Granted, this sometimes isn’t too convenient; for the case of integers, at least,
you can use the function make_int(), which constructs and returns an integer Lisp object. Note
that the XSETTYPE() macros are also affected by ERROR_CHECK_TYPECHECK and make sure that
the structure is of the right type in the case of record types, where the type is contained in the
structure.
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8 Rules When Writing New C Code

The XEmacs C Code is extremely complex and intricate, and there are many rules that are
more or less consistently followed throughout the code. Many of these rules are not obvious, so
they are explained here. It is of the utmost importance that you follow them. If you don’t, you
may get something that appears to work, but which will crash in odd situations, often in code
far away from where the actual breakage is.

8.1 General Coding Rules

Almost every module contains a syms_of_*() function and a vars_of_*() function. The
former declares any Lisp primitives you have defined and defines any symbols you will be using.
The latter declares any global Lisp variables you have added and initializes global C variables
in the module. For each such function, declare it in ‘symsinit.h’ and make sure it’s called in
the appropriate place in ‘emacs.c’. Important: There are stringent requirements on exactly
what can go into these functions. See the comment in ‘emacs.c’. The reason for this is to avoid
obscure unwanted interactions during initialization. If you don’t follow these rules, you’ll be
sorry! If you want to do anything that isn’t allowed, create a complex_vars_of_*() function
for it. Doing this is tricky, though: You have to make sure your function is called at the right
time so that all the initialization dependencies work out.

Every module includes ‘<config.h>’ (angle brackets so that ‘--srcdir’ works correctly;
‘config.h’ may or may not be in the same directory as the C sources) and ‘lisp.h’. ‘config.h’
should always be included before any other header files (including system header files) to ensure
that certain tricks played by various ‘s/’ and ‘m/’ files work out correctly.

All global and static variables that are to be modifiable must be declared uninitialized. This
means that you may not use the “declare with initializer” form for these variables, such as int
some_variable = 0;. The reason for this has to do with some kludges done during the dumping
process: If possible, the initialized data segment is re-mapped so that it becomes part of the
(unmodifiable) code segment in the dumped executable. This allows this memory to be shared
among multiple running XEmacs processes. XEmacs is careful to place as much constant data
as possible into initialized variables (in particular, into what’s called the pure space – see below)
during the ‘temacs’ phase.

Please note: This kludge only works on a few systems nowadays, and is rapidly becoming
irrelevant because most modern operating systems provide copy-on-write semantics. All data is
initially shared between processes, and a private copy is automatically made (on a page-by-page
basis) when a process first attempts to write to a page of memory.

Formerly, there was a requirement that static variables not be declared inside of functions.
This had to do with another hack along the same vein as what was just described: old USG
systems put statically-declared variables in the initialized data space, so those header files had
a #define static declaration. (That way, the data-segment remapping described above could
still work.) This fails badly on static variables inside of functions, which suddenly become
automatic variables; therefore, you weren’t supposed to have any of them. This awful kludge
has been removed in XEmacs because
1. almost all of the systems that used this kludge ended up having to disable the data-segment

remapping anyway;
2. the only systems that didn’t were extremely outdated ones;
3. this hack completely messed up inline functions.
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8.2 Writing Lisp Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C function
so that Lisp can call it are handled by a few C macros. The only way to really understand how
to write new C code is to read the source, but we can explain some things here.

An example of a special form is the definition of or, from ‘eval.c’. (An ordinary function
would have the same general appearance.)

DEFUN ("or", For, 0, UNEVALLED, 0, /*
Eval args until one of them yields non-nil, then return that value.
The remaining args are not evalled at all.
If all args return nil, return nil.
*/

(args))
{
/* This function can GC */
Lisp_Object val = Qnil;
struct gcpro gcpro1;

GCPRO1 (args);

while (!NILP (args))
{

val = Feval (XCAR (args));
if (!NILP (val))

break;
args = XCDR (args);

}

UNGCPRO;
return val;

}

Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a template
for them:

DEFUN (lname, fname, min, max, interactive, /*
docstring
*/

(arglist) )

lname This string is the name of the Lisp symbol to define as the function name; in the
example above, it is "or".

fname This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to the
Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores. Thus, to
call this function from C code, call For. Remember that the arguments are of type
Lisp_Object; various macros and functions for creating values of type Lisp_Object
are declared in the file ‘lisp.h’.
Primitives whose names are special characters (e.g. + or <) are named by spelling
out, in some fashion, the special character: e.g. Fplus() or Flss(). Primitives
whose names begin with normal alphanumeric characters but also contain special
characters are spelled out in some creative way, e.g. let* becomes FletX().
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Each function also has an associated structure that holds the data for the subr object
that represents the function in Lisp. This structure conveys the Lisp symbol name
to the initialization routine that will create the symbol and store the subr object as
its definition. The C variable name of this structure is always ‘S’ prepended to the
fname. You hardly ever need to be aware of the existence of this structure.

min This is the minimum number of arguments that the function requires. The function
or allows a minimum of zero arguments.

max This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number of
evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY are
macros. If max is a number, it may not be less than min and it may not be greater
than 8. (If you need to add a function with more than 8 arguments, either use the
MANY form or edit the definition of DEFUN in ‘lisp.h’. If you do the latter, make
sure to also add another clause to the switch statement in primitive_funcall().)

interactive
This is an interactive specification, a string such as might be used as the argument of
interactive in a Lisp function. In the case of or, it is 0 (a null pointer), indicating
that or cannot be called interactively. A value of "" indicates a function that should
receive no arguments when called interactively.

docstring This is the documentation string. It is written just like a documentation string for a
function defined in Lisp; in particular, the first line should be a single sentence. Note
how the documentation string is enclosed in a comment, none of the documentation
is placed on the same lines as the comment-start and comment-end characters, and
the comment-start characters are on the same line as the interactive specification.
‘make-docfile’, which scans the C files for documentation strings, is very particular
about what it looks for, and will not properly extract the doc string if it’s not in
this exact format.
You are free to put the various arguments to DEFUN on separate lines to avoid overly
long lines. However, make sure to put the comment-start characters for the doc
string on the same line as the interactive specification, and put a newline directly
after them (and before the comment-end characters).

arglist This is the comma-separated list of arguments to the C function. For a function
with a fixed maximum number of arguments, provide a C argument for each Lisp
argument. In this case, unlike regular C functions, the types of the arguments are
not declared; they are simply always of type Lisp_Object.
The names of the C arguments will be used as the names of the arguments to the Lisp
primitive as displayed in its documentation, modulo the same concerns described
above for F... names (in particular, underscores in the C arguments become dashes
in the Lisp arguments).
There is one additional kludge: A trailing ‘ ’ on the C argument is discarded when
forming the Lisp argument. This allows C language reserved words (like default)
or global symbols (like dirname) to be used as argument names without compiler
warnings or errors.
A Lisp function with max = UNEVALLED is a special form; its arguments are not
evaluated. Instead it receives one argument of type Lisp_Object, a (Lisp) list of
the unevaluated arguments, conventionally named (args).
When a Lisp function has no upper limit on the number of arguments, specify
max = MANY. In this case its implementation in C actually receives exactly two
arguments: the number of Lisp arguments (an int) and the address of a block
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containing their values (a Lisp_Object *). In this case only are the C types specified
in the arglist: (int nargs, Lisp_Object *args).

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. GCPRO1 is
used to “protect” a variable from garbage collection—to inform the garbage collector that it
must look in that variable and regard its contents as an accessible object. This is necessary
whenever you call Feval or anything that can directly or indirectly call Feval (this includes
the QUIT macro!). At such a time, any Lisp object that you intend to refer to again must be
protected somehow. UNGCPRO cancels the protection of the variables that are protected in the
current function. It is necessary to do this explicitly.

The macro GCPRO1 protects just one local variable. If you want to protect two, use GCPRO2
instead; repeating GCPRO1 will not work. Macros GCPRO3 and GCPRO4 also exist.

These macros implicitly use local variables such as gcpro1; you must declare these explicitly,
with type struct gcpro. Thus, if you use GCPRO2, you must declare gcpro1 and gcpro2.

Note also that the general rule is caller-protects; i.e. you are only responsible for protecting
those Lisp objects that you create. Any objects passed to you as parameters should have been
protected by whoever created them, so you don’t in general have to protect them. For is an
exception; it protects its parameters to provide extra assurance against Lisp primitives elsewhere
that are incorrectly written, and against malicious self-modifying code. There are a few other
standard functions that also do this.

GCPROing is perhaps the trickiest and most error-prone part of XEmacs coding. It is extremely
important that you get this right and use a great deal of discipline when writing this code. See
Section 10.3 [GCPROing], page 55, for full details on how to do this.

What DEFUN actually does is declare a global structure of type Lisp_Subr whose name begins
with capital ‘SF’ and which contains information about the primitive (e.g. a pointer to the
function, its minimum and maximum allowed arguments, a string describing its Lisp name);
DEFUN then begins a normal C function declaration using the F... name. The Lisp subr object
that is the function definition of a primitive (i.e. the object in the function slot of the symbol
that names the primitive) actually points to this ‘SF’ structure; when Feval encounters a subr,
it looks in the structure to find out how to call the C function.

Defining the C function is not enough to make a Lisp primitive available; you must also
create the Lisp symbol for the primitive (the symbol is interned; see Section 13.2 [Obarrays],
page 75) and store a suitable subr object in its function cell. (If you don’t do this, the primitive
won’t be seen by Lisp code.) The code looks like this:

DEFSUBR (fname);

Here fname is the name you used as the second argument to DEFUN.
This call to DEFSUBR should go in the syms_of_*() function at the end of the module. If no

such function exists, create it and make sure to also declare it in ‘symsinit.h’ and call it from
the appropriate spot in main(). See Section 8.1 [General Coding Rules], page 23.

Note that C code cannot call functions by name unless they are defined in C. The way to call
a function written in Lisp from C is to use Ffuncall, which embodies the Lisp function funcall.
Since the Lisp function funcall accepts an unlimited number of arguments, in C it takes two:
the number of Lisp-level arguments, and a one-dimensional array containing their values. The
first Lisp-level argument is the Lisp function to call, and the rest are the arguments to pass to
it. Since Ffuncall can call the evaluator, you must protect pointers from garbage collection
around the call to Ffuncall. (However, Ffuncall explicitly protects all of its parameters, so
you don’t have to protect any pointers passed as parameters to it.)

The C functions call0, call1, call2, and so on, provide handy ways to call a Lisp function
conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’ is a very good file to look through for examples; ‘lisp.h’ contains the definitions
for some important macros and functions.
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8.3 Adding Global Lisp Variables

Global variables whose names begin with ‘Q’ are constants whose value is a symbol of a
particular name. The name of the variable should be derived from the name of the symbol using
the same rules as for Lisp primitives. These variables are initialized using a call to defsymbol()
in the syms_of_*() function. (This call interns a symbol, sets the C variable to the resulting Lisp
object, and calls staticpro() on the C variable to tell the garbage-collection mechanism about
this variable. What staticpro() does is add a pointer to the variable to a large global array;
when garbage-collection happens, all pointers listed in the array are used as starting points for
marking Lisp objects. This is important because it’s quite possible that the only current reference
to the object is the C variable. In the case of symbols, the staticpro() doesn’t matter all that
much because the symbol is contained in obarray, which is itself staticpro()ed. However, it’s
possible that a naughty user could do something like uninterning the symbol out of obarray or
even setting obarray to a different value [although this is likely to make XEmacs crash!].)

Please note: It is potentially deadly if you declare a ‘Q...’ variable in two different modules.
The two calls to defsymbol() are no problem, but some linkers will complain about multiply-
defined symbols. The most insidious aspect of this is that often the link will succeed anyway, but
then the resulting executable will sometimes crash in obscure ways during certain operations!
To avoid this problem, declare any symbols with common names (such as text) that are not
obviously associated with this particular module in the module ‘general.c’.

Global variables whose names begin with ‘V’ are variables that contain Lisp objects. The
convention here is that all global variables of type Lisp_Object begin with ‘V’, and all others
don’t (including integer and boolean variables that have Lisp equivalents). Most of the time,
these variables have equivalents in Lisp, but some don’t. Those that do are declared this way
by a call to DEFVAR_LISP() in the vars_of_*() initializer for the module. What this does
is create a special symbol-value-forward Lisp object that contains a pointer to the C variable,
intern a symbol whose name is as specified in the call to DEFVAR_LISP(), and set its value to the
symbol-value-forward Lisp object; it also calls staticpro() on the C variable to tell the garbage-
collection mechanism about the variable. When eval (or actually symbol-value) encounters
this special object in the process of retrieving a variable’s value, it follows the indirection to the
C variable and gets its value. setq does similar things so that the C variable gets changed.

Whether or not you DEFVAR_LISP() a variable, you need to initialize it in the vars_of_
*() function; otherwise it will end up as all zeroes, which is the integer 0 (not nil), and this
is probably not what you want. Also, if the variable is not DEFVAR_LISP()ed, you must call
staticpro() on the C variable in the vars_of_*() function. Otherwise, the garbage-collection
mechanism won’t know that the object in this variable is in use, and will happily collect it and
reuse its storage for another Lisp object, and you will be the one who’s unhappy when you can’t
figure out how your variable got overwritten.

8.4 Coding for Mule

Although Mule support is not compiled by default in XEmacs, many people are using it,
and we consider it crucial that new code works correctly with multibyte characters. This is not
hard; it is only a matter of following several simple user-interface guidelines. Even if you never
compile with Mule, with a little practice you will find it quite easy to code Mule-correctly.

Note that these guidelines are not necessarily tied to the current Mule implementation; they
are also a good idea to follow on the grounds of code generalization for future I18N work.

8.4.1 Character-Related Data Types
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First, we will list the basic character-related datatypes used by XEmacs. Note that the
separate typedefs are not required for the code to work (all of them boil down to unsigned
char or int), but they improve clarity of code a great deal, because one glance at the declaration
can tell the intended use of the variable.

Emchar An Emchar holds a single Emacs character.
Obviously, the equality between characters and bytes is lost in the Mule world.
Characters can be represented by one or more bytes in the buffer, and Emchar is the
C type large enough to hold any character.
Without Mule support, an Emchar is equivalent to an unsigned char.

Bufbyte The data representing the text in a buffer or string is logically a set of Bufbytes.
XEmacs does not work with character formats all the time; when reading characters
from the outside, it decodes them to an internal format, and likewise encodes them
when writing. Bufbyte (in fact unsigned char) is the basic unit of XEmacs internal
buffers and strings format.
One character can correspond to one or more Bufbytes. In the current imple-
mentation, an ASCII character is represented by the same Bufbyte, and extended
characters are represented by a sequence of Bufbytes.
Without Mule support, a Bufbyte is equivalent to an Emchar.

Bufpos
Charcount

A Bufpos represents a character position in a buffer or string. A Charcount rep-
resents a number (count) of characters. Logically, subtracting two Bufpos values
yields a Charcount value. Although all of these are typedefed to int, we use them
in preference to int to make it clear what sort of position is being used.
Bufpos and Charcount values are the only ones that are ever visible to Lisp.

Bytind
Bytecount

A Bytind represents a byte position in a buffer or string. A Bytecount represents
the distance between two positions in bytes. The relationship between Bytind and
Bytecount is the same as the relationship between Bufpos and Charcount.

Extbyte
Extcount When dealing with the outside world, XEmacs works with Extbytes, which are

equivalent to unsigned char. Obviously, an Extcount is the distance between two
Extbytes. Extbytes and Extcounts are not all that frequent in XEmacs code.

8.4.2 Working With Character and Byte Positions

Now that we have defined the basic character-related types, we can look at the macros and
functions designed for work with them and for conversion between them. Most of these macros
are defined in ‘buffer.h’, and we don’t discuss all of them here, but only the most important
ones. Examining the existing code is the best way to learn about them.

MAX_EMCHAR_LEN
This preprocessor constant is the maximum number of buffer bytes per Emacs char-
acter, i.e. the byte length of an Emchar. It is useful when allocating temporary
strings to keep a known number of characters. For instance:
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{
Charcount cclen;
...
{

/* Allocate place for cclen characters. */
Bufbyte *tmp_buf = (Bufbyte *)alloca (cclen * MAX_EMCHAR_LEN);

...

If you followed the previous section, you can guess that, logically, multiplying a
Charcount value with MAX_EMCHAR_LEN produces a Bytecount value.
In the current Mule implementation, MAX_EMCHAR_LEN equals 4. Without Mule, it
is 1.

charptr_emchar

set_charptr_emchar
charptr_emchar macro takes a Bufbyte pointer and returns the underlying Emchar.
If it were a function, its prototype would be:

Emchar charptr_emchar (Bufbyte *p);

set_charptr_emchar stores an Emchar to the specified byte position. It returns the
number of bytes stored:

Bytecount set_charptr_emchar (Bufbyte *p, Emchar c);

It is important to note that set_charptr_emchar is safe only for appending a char-
acter at the end of a buffer, not for overwriting a character in the middle. This is
because the width of characters varies, and set_charptr_emchar cannot resize the
string if it writes, say, a two-byte character where a single-byte character used to
reside.
A typical use of set_charptr_emchar can be demonstrated by this example, which
copies characters from buffer buf to a temporary string of Bufbytes.

{
Bufpos pos;
for (pos = beg; pos < end; pos++)

{
Emchar c = BUF_FETCH_CHAR (buf, pos);
p += set_charptr_emchar (buf, c);

}
}

Note how set_charptr_emchar is used to store the Emchar and increment the
counter, at the same time.

INC_CHARPTR
DEC_CHARPTR

These two macros increment and decrement a Bufbyte pointer, respectively. The
pointer needs to be correctly positioned at the beginning of a valid character posi-
tion.
Without Mule support, INC_CHARPTR (p) and DEC_CHARPTR (p) simply expand to
p++ and p--, respectively.

bytecount_to_charcount
Given a pointer to a text string and a length in bytes, return the equivalent length
in characters.

Charcount bytecount_to_charcount (Bufbyte *p, Bytecount bc);
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charcount_to_bytecount
Given a pointer to a text string and a length in characters, return the equivalent
length in bytes.

Bytecount charcount_to_bytecount (Bufbyte *p, Charcount cc);

charptr_n_addr
Return a pointer to the beginning of the character offset cc (in characters) from p.

Bufbyte *charptr_n_addr (Bufbyte *p, Charcount cc);

8.4.3 Conversion of External Data

When an external function, such as a C library function, returns a char pointer, you should
never treat it as Bufbyte. This is because these returned strings may contain 8bit characters
which can be misinterpreted by XEmacs, and cause a crash. Instead, you should use a conversion
macro. Many different conversion macros are defined in ‘buffer.h’, so I will try to order them
logically, by direction and by format.

Thus the basic conversion macros are GET_CHARPTR_INT_DATA_ALLOCA and GET_CHARPTR_
EXT_DATA_ALLOCA. The former is used to convert external data to internal format, and the
latter is used to convert the other way around. The arguments each of these receives are ptr
(pointer to the text in external format), len (length of texts in bytes), fmt (format of the external
text), ptr out (lvalue to which new text should be copied), and len out (lvalue which will be
assigned the length of the internal text in bytes). The resulting text is stored to a stack-allocated
buffer. If the text doesn’t need changing, these macros will do nothing, except for setting len out.

Currently meaningful formats are FORMAT_BINARY, FORMAT_FILENAME, FORMAT_OS, and
FORMAT_CTEXT.

The two macros above take many arguments which makes them unwieldy. For this reason,
several convenience macros are defined with obvious functionality, but accepting less arguments:

GET_C_CHARPTR_EXT_DATA_ALLOCA
GET_C_CHARPTR_INT_DATA_ALLOCA

These two macros work on “C char pointers”, which are zero-terminated, and thus
do not need len or len out parameters.

GET_STRING_EXT_DATA_ALLOCA
GET_C_STRING_EXT_DATA_ALLOCA

These two macros work on Lisp strings, thus also not needing a len parameter.
However, GET_STRING_EXT_DATA_ALLOCA still provides a len out parameter. Note
that for Lisp strings only one conversion direction makes sense.

GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA
GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA
GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA
... These macros are a combination of the above, but with the fmt argument encoded

into the name of the macro.

8.4.4 General Guidelines for Writing Mule-Aware Code

This section contains some general guidance on how to write Mule-aware code, as well as
some pitfalls you should avoid.

Never use char and char *.
In XEmacs, the use of char and char * is almost always a mistake. If you want
to manipulate an Emacs character from “C”, use Emchar. If you want to examine
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a specific octet in the internal format, use Bufbyte. If you want a Lisp-visible
character, use a Lisp_Object and make_char. If you want a pointer to move through
the internal text, use Bufbyte *. Also note that you almost certainly do not need
Emchar *.

Be careful not to confuse Charcount, Bytecount, and Bufpos.
The whole point of using different types is to avoid confusion about the use of certain
variables. Lest this effect be nullified, you need to be careful about using the right
types.

Always convert external data
It is extremely important to always convert external data, because XEmacs can
crash if unexpected 8bit sequences are copied to its internal buffers literally.
This means that when a system function, such as readdir, returns a string, you
need to convert it using one of the conversion macros described in the previous
chapter, before passing it further to Lisp. In the case of readdir, you would use
the GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA macro.
Also note that many internal functions, such as make_string, accept Bufbytes,
which removes the need for them to convert the data they receive. This increases
efficiency because that way external data needs to be decoded only once, when it is
read. After that, it is passed around in internal format.

8.4.5 An Example of Mule-Aware Code

As an example of Mule-aware code, we shall will analyze the string function, which conses
up a Lisp string from the character arguments it receives. Here is the definition, pasted from
alloc.c:

DEFUN ("string", Fstring, 0, MANY, 0, /*
Concatenate all the argument characters and make the result a string.
*/

(int nargs, Lisp_Object *args))
{
Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
Bufbyte *p = storage;

for (; nargs; nargs--, args++)
{

Lisp_Object lisp_char = *args;
CHECK_CHAR_COERCE_INT (lisp_char);
p += set_charptr_emchar (p, XCHAR (lisp_char));

}
return make_string (storage, p - storage);

}

Now we can analyze the source line by line.
Obviously, string will be as long as there are arguments to the function. This is why we

allocate MAX_EMCHAR_LEN * nargs bytes on the stack, i.e. the worst-case number of bytes for
nargs Emchars to fit in the string.

Then, the loop checks that each element is a character, converting integers in the process.
Like many other functions in XEmacs, this function silently accepts integers where characters
are expected, for historical and compatibility reasons. Unless you know what you are doing,
CHECK_CHAR will also suffice. XCHAR (lisp_char) extracts the Emchar from the Lisp_Object,
and set_charptr_emchar stores it to storage, increasing p in the process.
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Other instructing examples of correct coding under Mule can be found all over XEmacs
code. For starters, I recommend Fnormalize_menu_item_name in ‘menubar.c’. After you have
understood this section of the manual and studied the examples, you can proceed writing new
Mule-aware code.

8.5 Techniques for XEmacs Developers

To make a quantified XEmacs, do: make quantmacs.
You simply can’t dump Quantified and Purified images. Run the image like so: quantmacs

-batch -l loadup.el run-temacs -q.
Before you go through the trouble, are you compiling with all debugging and error-checking

off? If not try that first. Be warned that while Quantify is directly responsible for quite a few
optimizations which have been made to XEmacs, doing a run which generates results which can
be acted upon is not necessarily a trivial task.

Also, if you’re still willing to do some runs make sure you configure with the ‘--quantify’
flag. That will keep Quantify from starting to record data until after the loadup is completed
and will shut off recording right before it shuts down (which generates enough bogus data to
throw most results off). It also enables three additional elisp commands: quantify-start-
recording-data, quantify-stop-recording-data and quantify-clear-data.

To get started debugging XEmacs, take a look at the ‘gdbinit’ and ‘dbxrc’ files in the
‘src’ directory. See section “Q2.1.15 - How to Debug an XEmacs problem with a debugger” in
XEmacs FAQ.

Here are things to know when you create a new source file:
• All .c files should #include <config.h> first. Almost all .c files should #include "lisp.h"

second.
• Generated header files should be included using the <> syntax, not the "" syntax. The

generated headers are:
config.h puresize-adjust.h sheap-adjust.h paths.h Emacs.ad.h
The basic rule is that you should assume builds using --srcdir and the <> syntax needs
to be used when the to-be-included generated file is in a potentially different directory at
compile time.

• Header files should not include <config.h> and "lisp.h". It is the responsibility of the .c files
that use it to do so.

• If the header uses INLINE, either directly or though DECLARE LRECORD, then it must
be added to inline.c’s includes.

• Try compiling at least once with
gcc --with-mule --with-union-type --error-checking=all
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9 A Summary of the Various XEmacs Modules

This is accurate as of XEmacs 20.0.

9.1 Low-Level Modules

size name
------- ---------------------
18150 config.h

This is automatically generated from ‘config.h.in’ based on the results of configure tests
and user-selected optional features and contains preprocessor definitions specifying the nature
of the environment in which XEmacs is being compiled.

2347 paths.h

This is automatically generated from ‘paths.h.in’ based on supplied configure values, and
allows for non-standard installed configurations of the XEmacs directories. It’s currently broken,
though.

47878 emacs.c
20239 signal.c

‘emacs.c’ contains main() and other code that performs the most basic environment initial-
izations and handles shutting down the XEmacs process (this includes kill-emacs, the normal
way that XEmacs is exited; dump-emacs, which is used during the build process to write out
the XEmacs executable; run-emacs-from-temacs, which can be used to start XEmacs directly
when temacs has finished loading all the Lisp code; and emergency code to handle crashes
[XEmacs tries to auto-save all files before it crashes]).

Low-level code that directly interacts with the Unix signal mechanism, however, is in
‘signal.c’. Note that this code does not handle system dependencies in interfacing to sig-
nals; that is handled using the ‘syssignal.h’ header file, described in section J below.

23458 unexaix.c
9893 unexalpha.c
11302 unexapollo.c
16544 unexconvex.c
31967 unexec.c
30959 unexelf.c
35791 unexelfsgi.c
3207 unexencap.c
7276 unexenix.c
20539 unexfreebsd.c
1153 unexfx2800.c
13432 unexhp9k3.c
11049 unexhp9k800.c
9165 unexmips.c
8981 unexnext.c
1673 unexsol2.c
19261 unexsunos4.c

These modules contain code dumping out the XEmacs executable on various different sys-
tems. (This process is highly machine-specific and requires intimate knowledge of the executable
format and the memory map of the process.) Only one of these modules is actually used; this
is chosen by ‘configure’.
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15715 crt0.c
1484 lastfile.c
1115 pre-crt0.c

These modules are used in conjunction with the dump mechanism. On some systems, an
alternative version of the C startup code (the actual code that receives control from the operating
system when the process is started, and which calls main()) is required so that the dumping
process works properly; ‘crt0.c’ provides this.

‘pre-crt0.c’ and ‘lastfile.c’ should be the very first and very last file linked, respec-
tively. (Actually, this is not really true. ‘lastfile.c’ should be after all Emacs modules
whose initialized data should be made constant, and before all other Emacs files and all li-
braries. In particular, the allocation modules ‘gmalloc.c’, ‘alloca.c’, etc. are normally placed
past ‘lastfile.c’, and all of the files that implement Xt widget classes must be placed after
‘lastfile.c’ because they contain various structures that must be statically initialized and into
which Xt writes at various times.) ‘pre-crt0.c’ and ‘lastfile.c’ contain exported symbols
that are used to determine the start and end of XEmacs’ initialized data space when dumping.

14786 alloca.c
16678 free-hook.c
1692 getpagesize.h
41936 gmalloc.c
25141 malloc.c
3802 mem-limits.h
39011 ralloc.c
3436 vm-limit.c

These handle basic C allocation of memory. ‘alloca.c’ is an emulation of the stack allocation
function alloca() on machines that lack this. (XEmacs makes extensive use of alloca() in its
code.)

‘gmalloc.c’ and ‘malloc.c’ are two implementations of the standard C functions malloc(),
realloc() and free(). They are often used in place of the standard system-provided malloc()
because they usually provide a much faster implementation, at the expense of additional memory
use. ‘gmalloc.c’ is a newer implementation that is much more memory-efficient for large allo-
cations than ‘malloc.c’, and should always be preferred if it works. (At one point, ‘gmalloc.c’
didn’t work on some systems where ‘malloc.c’ worked; but this should be fixed now.)

‘ralloc.c’ is the relocating allocator. It provides functions similar to malloc(), realloc()
and free() that allocate memory that can be dynamically relocated in memory. The advantage
of this is that allocated memory can be shuffled around to place all the free memory at the end of
the heap, and the heap can then be shrunk, releasing the memory back to the operating system.
The use of this can be controlled with the configure option --rel-alloc; if enabled, memory
allocated for buffers will be relocatable, so that if a very large file is visited and the buffer is
later killed, the memory can be released to the operating system. (The disadvantage of this
mechanism is that it can be very slow. On systems with the mmap() system call, the XEmacs
version of ‘ralloc.c’ uses this to move memory around without actually having to block-copy
it, which can speed things up; but it can still cause noticeable performance degradation.)

‘free-hook.c’ contains some debugging functions for checking for invalid arguments to
free().

‘vm-limit.c’ contains some functions that warn the user when memory is getting low. These
are callback functions that are called by ‘gmalloc.c’ and ‘malloc.c’ at appropriate times.

‘getpagesize.h’ provides a uniform interface for retrieving the size of a page in virtual
memory. ‘mem-limits.h’ provides a uniform interface for retrieving the total amount of available
virtual memory. Both are similar in spirit to the ‘sys*.h’ files described in section J, below.

2659 blocktype.c
1410 blocktype.h
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7194 dynarr.c
2671 dynarr.h

These implement a couple of basic C data types to facilitate memory allocation. The
Blocktype type efficiently manages the allocation of fixed-size blocks by minimizing the number
of times that malloc() and free() are called. It allocates memory in large chunks, subdivides
the chunks into blocks of the proper size, and returns the blocks as requested. When blocks are
freed, they are placed onto a linked list, so they can be efficiently reused. This data type is not
much used in XEmacs currently, because it’s a fairly new addition.

The Dynarr type implements a dynamic array, which is similar to a standard C array but
has no fixed limit on the number of elements it can contain. Dynamic arrays can hold elements
of any type, and when you add a new element, the array automatically resizes itself if it isn’t
big enough. Dynarrs are extensively used in the redisplay mechanism.

2058 inline.c

This module is used in connection with inline functions (available in some compilers). Often,
inline functions need to have a corresponding non-inline function that does the same thing. This
module is where they reside. It contains no actual code, but defines some special flags that cause
inline functions defined in header files to be rendered as actual functions. It then includes all
header files that contain any inline function definitions, so that each one gets a real function
equivalent.

6489 debug.c
2267 debug.h

These functions provide a system for doing internal consistency checks during code develop-
ment. This system is not currently used; instead the simpler assert() macro is used along with
the various checks provided by the ‘--error-check-*’ configuration options.

1643 prefix-args.c

This is actually the source for a small, self-contained program used during building.
904 universe.h

This is not currently used.

9.2 Basic Lisp Modules

size name
------- ---------------------
70167 emacsfns.h
6305 lisp-disunion.h
7086 lisp-union.h
54929 lisp.h
14235 lrecord.h
10728 symsinit.h

These are the basic header files for all XEmacs modules. Each module includes ‘lisp.h’,
which brings the other header files in. ‘lisp.h’ contains the definitions of the structures and
extractor and constructor macros for the basic Lisp objects and various other basic definitions
for the Lisp environment, as well as some general-purpose definitions (e.g. min() and max()).
‘lisp.h’ includes either ‘lisp-disunion.h’ or ‘lisp-union.h’, depending on whether USE_
UNION_TYPE is defined. These files define the typedef of the Lisp object itself (as described
above) and the low-level macros that hide the actual implementation of the Lisp object. All
extractor and constructor macros for particular types of Lisp objects are defined in terms of
these low-level macros.
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As a general rule, all typedefs should go into the typedefs section of ‘lisp.h’ rather than
into a module-specific header file even if the structure is defined elsewhere. This allows function
prototypes that use the typedef to be placed into ‘emacsfns.h’. Forward structure declarations
(i.e. a simple declaration like struct foo; where the structure itself is defined elsewhere) should
be placed into the typedefs section as necessary.

‘lrecord.h’ contains the basic structures and macros that implement all record-type Lisp
objects – i.e. all objects whose type is a field in their C structure, which includes all objects
except the few most basic ones.

‘emacsfns.h’ contains prototypes for most of the exported functions in the various modules.
(In particular, prototypes for Lisp primitives should always go into this header file. Prototypes
for other functions can either go here or in a module-specific header file, depending on how
general-purpose the function is and whether it has special-purpose argument types requiring
definitions not in ‘lisp.h’.) All initialization functions are prototyped in ‘symsinit.h’.

120478 alloc.c
1029 pure.c
2506 puresize.h

The large module ‘alloc.c’ implements all of the basic allocation and garbage collection
for Lisp objects. The most commonly used Lisp objects are allocated in chunks, similar to the
Blocktype data type described above; others are allocated in individually malloc()ed blocks.
This module provides the foundation on which all other aspects of the Lisp environment sit, and
is the first module initialized at startup.

Note that ‘alloc.c’ provides a series of generic functions that are not dependent on any
particular object type, and interfaces to particular types of objects using a standardized interface
of type-specific methods. This scheme is a fundamental principle of object-oriented programming
and is heavily used throughout XEmacs. The great advantage of this is that it allows for a
clean separation of functionality into different modules – new classes of Lisp objects, new event
interfaces, new device types, new stream interfaces, etc. can be added transparently without
affecting code anywhere else in XEmacs. Because the different subsystems are divided into
general and specific code, adding a new subtype within a subsystem will in general not require
changes to the generic subsystem code or affect any of the other subtypes in the subsystem; this
provides a great deal of robustness to the XEmacs code.

‘pure.c’ contains the declaration of the purespace array. Pure space is a hack used to place
some constant Lisp data into the code segment of the XEmacs executable, even though the data
needs to be initialized through function calls. (See above in section VIII for more info about
this.) During startup, certain sorts of data is automatically copied into pure space, and other
data is copied manually in some of the basic Lisp files by calling the function purecopy, which
copies the object if possible (this only works in temacs, of course) and returns the new object.
In particular, while temacs is executing, the Lisp reader automatically copies all compiled-
function objects that it reads into pure space. Since compiled-function objects are large, are
never modified, and typically comprise the majority of the contents of a compiled-Lisp file, this
works well. While XEmacs is running, any attempt to modify an object that resides in pure
space causes an error. Objects in pure space are never garbage collected – almost all of the time,
they’re intended to be permanent, and in any case you can’t write into pure space to set the
mark bits.

‘puresize.h’ contains the declaration of the size of the pure space array. This depends on
the optional features that are compiled in, any extra purespace requested by the user at compile
time, and certain other factors (e.g. 64-bit machines need more pure space because their Lisp
objects are larger). The smallest size that suffices should be used, so that there’s no wasted
space. If there’s not enough pure space, you will get an error during the build process, specifying
how much more pure space is needed.

122243 eval.c
2305 backtrace.h
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This module contains all of the functions to handle the flow of control. This includes the
mechanisms of defining functions, calling functions, traversing stack frames, and binding vari-
ables; the control primitives and other special forms such as while, if, eval, let, and, or,
progn, etc.; handling of non-local exits, unwind-protects, and exception handlers; entering the
debugger; methods for the subr Lisp object type; etc. It does not include the read function, the
print function, or the handling of symbols and obarrays.

‘backtrace.h’ contains some structures related to stack frames and the flow of control.
64949 lread.c

This module implements the Lisp reader and the read function, which converts text into
Lisp objects, according to the read syntax of the objects, as described above. This is similar to
the parser that is a part of all compilers.

40900 print.c

This module implements the Lisp print mechanism and the print function and related func-
tions. This is the inverse of the Lisp reader – it converts Lisp objects to a printed, textual
representation. (Hopefully something that can be read back in using read to get an equivalent
object.)

4518 general.c
60220 symbols.c
9966 symeval.h

‘symbols.c’ implements the handling of symbols, obarrays, and retrieving the values of sym-
bols. Much of the code is devoted to handling the special symbol-value-magic objects that define
special types of variables – this includes buffer-local variables, variable aliases, variables that
forward into C variables, etc. This module is initialized extremely early (right after ‘alloc.c’),
because it is here that the basic symbols t and nil are created, and those symbols are used
everywhere throughout XEmacs.

‘symeval.h’ contains the definitions of symbol structures and the DEFVAR_LISP() and related
macros for declaring variables.

48973 data.c
25694 floatfns.c
71049 fns.c

These modules implement the methods and standard Lisp primitives for all the basic Lisp
object types other than symbols (which are described above). ‘data.c’ contains all the predi-
cates (primitives that return whether an object is of a particular type); the integer arithmetic
functions; and the basic accessor and mutator primitives for the various object types. ‘fns.c’
contains all the standard predicates for working with sequences (where, abstractly speaking, a
sequence is an ordered set of objects, and can be represented by a list, string, vector, or bit-
vector); it also contains equal, perhaps on the grounds that bulk of the operation of equal
is comparing sequences. ‘floatfns.c’ contains methods and primitives for floats and floating-
point arithmetic.

23555 bytecode.c
3358 bytecode.h

‘bytecode.c’ implements the byte-code interpreter, and ‘bytecode.h’ contains associated
structures. Note that the byte-code compiler is written in Lisp.

9.3 Modules for Standard Editing Operations

size name
------- ---------------------

82900 buffer.c
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60964 buffer.h
6059 bufslots.h

‘buffer.c’ implements the buffer Lisp object type. This includes functions that create and
destroy buffers; retrieve buffers by name or by other properties; manipulate lists of buffers
(remember that buffers are permanent objects and stored in various ordered lists); retrieve or
change buffer properties; etc. It also contains the definitions of all the built-in buffer-local
variables (which can be viewed as buffer properties). It does not contain code to manipulate
buffer-local variables (that’s in ‘symbols.c’, described above); or code to manipulate the text
in a buffer.

‘buffer.h’ defines the structures associated with a buffer and the various macros for retriev-
ing text from a buffer and special buffer positions (e.g. point, the default location for text
insertion). It also contains macros for working with buffer positions and converting between
their representations as character offsets and as byte offsets (under MULE, they are different,
because characters can be multi-byte). It is one of the largest header files.

‘bufslots.h’ defines the fields in the buffer structure that correspond to the built-in buffer-
local variables. It is its own header file because it is included many times in ‘buffer.c’, as a
way of iterating over all the built-in buffer-local variables.

79888 insdel.c
6103 insdel.h

‘insdel.c’ contains low-level functions for inserting and deleting text in a buffer, keeping
track of changed regions for use by redisplay, and calling any before-change and after-change
functions that may have been registered for the buffer. It also contains the actual functions that
convert between byte offsets and character offsets.

‘insdel.h’ contains associated headers.
10975 marker.c

This module implements the marker Lisp object type, which conceptually is a pointer to a
text position in a buffer that moves around as text is inserted and deleted, so as to remain in the
same relative position. This module doesn’t actually move the markers around – that’s handled
in ‘insdel.c’. This module just creates them and implements the primitives for working with
them. As markers are simple objects, this does not entail much.

Note that the standard arithmetic primitives (e.g. +) accept markers in place of integers and
automatically substitute the value of marker-position for the marker, i.e. an integer describing
the current buffer position of the marker.

193714 extents.c
15686 extents.h

This module implements the extent Lisp object type, which is like a marker that works over
a range of text rather than a single position. Extents are also much more complex and powerful
than markers and have a more efficient (and more algorithmically complex) implementation.
The implementation is described in detail in comments in ‘extents.c’.

The code in ‘extents.c’ works closely with ‘insdel.c’ so that extents are properly moved
around as text is inserted and deleted. There is also code in ‘extents.c’ that provides infor-
mation needed by the redisplay mechanism for efficient operation. (Remember that extents can
have display properties that affect [sometimes drastically, as in the invisible property] the
display of the text they cover.)

60155 editfns.c

‘editfns.c’ contains the standard Lisp primitives for working with a buffer’s text, and calls
the low-level functions in ‘insdel.c’. It also contains primitives for working with point (the
default buffer insertion location).

‘editfns.c’ also contains functions for retrieving various characteristics from the external
environment: the current time, the process ID of the running XEmacs process, the name of the
user who ran this XEmacs process, etc. It’s not clear why this code is in ‘editfns.c’.
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26081 callint.c
12577 cmds.c
2749 commands.h

These modules implement the basic interactive commands, i.e. user-callable functions. Com-
mands, as opposed to other functions, have special ways of getting their parameters interactively
(by querying the user), as opposed to having them passed in a normal function invocation. Many
commands are not really meant to be called from other Lisp functions, because they modify
global state in a way that’s often undesired as part of other Lisp functions.

‘callint.c’ implements the mechanism for querying the user for parameters and calling
interactive commands. The bulk of this module is code that parses the interactive spec that is
supplied with an interactive command.

‘cmds.c’ implements the basic, most commonly used editing commands: commands to move
around the current buffer and insert and delete characters. These commands are implemented
using the Lisp primitives defined in ‘editfns.c’.

‘commands.h’ contains associated structure definitions and prototypes.
194863 regex.c
18968 regex.h
79800 search.c

‘search.c’ implements the Lisp primitives for searching for text in a buffer, and some of
the low-level algorithms for doing this. In particular, the fast fixed-string Boyer-Moore search
algorithm is implemented in ‘search.c’. The low-level algorithms for doing regular-expression
searching, however, are implemented in ‘regex.c’ and ‘regex.h’. These two modules are largely
independent of XEmacs, and are similar to (and based upon) the regular-expression routines
used in ‘grep’ and other GNU utilities.

20476 doprnt.c

‘doprnt.c’ implements formatted-string processing, similar to printf() command in C.
15372 undo.c

This module implements the undo mechanism for tracking buffer changes. Most of this could
be implemented in Lisp.

9.4 Editor-Level Control Flow Modules

size name
------- ---------------------
84546 event-Xt.c
121483 event-stream.c

6658 event-tty.c
49271 events.c
14459 events.h

These implement the handling of events (user input and other system notifications).
‘events.c’ and ‘events.h’ define the event Lisp object type and primitives for manipulating

it.
‘event-stream.c’ implements the basic functions for working with event queues, dispatching

an event by looking it up in relevant keymaps and such, and handling timeouts; this includes
the primitives next-event and dispatch-event, as well as related primitives such as sit-for,
sleep-for, and accept-process-output. (‘event-stream.c’ is one of the hairiest and trickiest
modules in XEmacs. Beware! You can easily mess things up here.)

‘event-Xt.c’ and ‘event-tty.c’ implement the low-level interfaces onto retrieving events
from Xt (the X toolkit) and from TTY’s (using read() and select()), respectively. The event
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interface enforces a clean separation between the specific code for interfacing with the operating
system and the generic code for working with events, by defining an API of basic, low-level event
methods; ‘event-Xt.c’ and ‘event-tty.c’ are two different implementations of this API. To
add support for a new operating system (e.g. NeXTstep), one merely needs to provide another
implementation of those API functions.

Note that the choice of whether to use ‘event-Xt.c’ or ‘event-tty.c’ is made at compile
time! Or at the very latest, it is made at startup time. ‘event-Xt.c’ handles events for both
X and TTY frames; ‘event-tty.c’ is only used when X support is not compiled into XEmacs.
The reason for this is that there is only one event loop in XEmacs: thus, it needs to be able to
receive events from all different kinds of frames.

129583 keymap.c
2621 keymap.h

‘keymap.c’ and ‘keymap.h’ define the keymap Lisp object type and associated methods and
primitives. (Remember that keymaps are objects that associate event descriptions with functions
to be called to “execute” those events; dispatch-event looks up events in the relevant keymaps.)

25212 keyboard.c

‘keyboard.c’ contains functions that implement the actual editor command loop – i.e. the
event loop that cyclically retrieves and dispatches events. This code is also rather tricky, just
like ‘event-stream.c’.

9973 macros.c
1397 macros.h

These two modules contain the basic code for defining keyboard macros. These functions
don’t actually do much; most of the code that handles keyboard macros is mixed in with the
event-handling code in ‘event-stream.c’.

23234 minibuf.c

This contains some miscellaneous code related to the minibuffer (most of the minibuffer
code was moved into Lisp by Richard Mlynarik). This includes the primitives for completion
(although filename completion is in ‘dired.c’), the lowest-level interface to the minibuffer (if
the command loop were cleaned up, this too could be in Lisp), and code for dealing with the
echo area (this, too, was mostly moved into Lisp, and the only code remaining is code to call out
to Lisp or provide simple bootstrapping implementations early in temacs, before the echo-area
Lisp code is loaded).

9.5 Modules for the Basic Displayable Lisp Objects

size name
------- ---------------------

985 device-ns.h
6454 device-stream.c
1196 device-stream.h
9526 device-tty.c
8660 device-tty.h
43798 device-x.c
11667 device-x.h
26056 device.c
22993 device.h

These modules implement the device Lisp object type. This abstracts a particular screen
or connection on which frames are displayed. As with Lisp objects, event interfaces, and other
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subsystems, the device code is separated into a generic component that contains a standardized
interface (in the form of a set of methods) onto particular device types.

The device subsystem defines all the methods and provides method services for not only device
operations but also for the frame, window, menubar, scrollbar, toolbar, and other displayable-
object subsystems. The reason for this is that all of these subsystems have the same subtypes
(X, TTY, NeXTstep, Microsoft Windows, etc.) as devices do.

934 frame-ns.h
2303 frame-tty.c
69205 frame-x.c
5976 frame-x.h
68175 frame.c
15080 frame.h

Each device contains one or more frames in which objects (e.g. text) are displayed. A frame
corresponds to a window in the window system; usually this is a top-level window but it could
potentially be one of a number of overlapping child windows within a top-level window, using
the MDI (Multiple Document Interface) protocol in Microsoft Windows or a similar scheme.

The ‘frame-*’ files implement the frame Lisp object type and provide the generic and device-
type-specific operations on frames (e.g. raising, lowering, resizing, moving, etc.).

160783 window.c
15974 window.h

Each frame consists of one or more non-overlapping windows (better known as panes in
standard window-system terminology) in which a buffer’s text can be displayed. Windows can
also have scrollbars displayed around their edges.

‘window.c’ and ‘window.h’ implement the window Lisp object type and provide code to
manage windows. Since windows have no associated resources in the window system (the window
system knows only about the frame; no child windows or anything are used for XEmacs windows),
there is no device-type-specific code here; all of that code is part of the redisplay mechanism or
the code for particular object types such as scrollbars.

9.6 Modules for other Display-Related Lisp Objects

size name
------- ---------------------
54397 faces.c
15173 faces.h

4961 bitmaps.h
954 glyphs-ns.h

105345 glyphs-x.c
4288 glyphs-x.h
72102 glyphs.c
16356 glyphs.h

952 objects-ns.h
9971 objects-tty.c
1465 objects-tty.h
32326 objects-x.c
2806 objects-x.h
31944 objects.c
6809 objects.h
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57511 menubar-x.c
11243 menubar.c

25012 scrollbar-x.c
2554 scrollbar-x.h
26954 scrollbar.c
2778 scrollbar.h

23117 toolbar-x.c
43456 toolbar.c
4280 toolbar.h

25070 font-lock.c

This file provides C support for syntax highlighting – i.e. highlighting different syntactic
constructs of a source file in different colors, for easy reading. The C support is provided so that
this is fast.

32180 dgif_lib.c
3999 gif_err.c
10697 gif_lib.h
9371 gifalloc.c

These modules decode GIF-format image files, for use with glyphs.

9.7 Modules for the Redisplay Mechanism

size name
------- ---------------------
38692 redisplay-output.c
40835 redisplay-tty.c
65069 redisplay-x.c
234142 redisplay.c
17026 redisplay.h

These files provide the redisplay mechanism. As with many other subsystems in XEmacs,
there is a clean separation between the general and device-specific support.

‘redisplay.c’ contains the bulk of the redisplay engine. These functions update the redisplay
structures (which describe how the screen is to appear) to reflect any changes made to the state
of any displayable objects (buffer, frame, window, etc.) since the last time that redisplay was
called. These functions are highly optimized to avoid doing more work than necessary (since
redisplay is called extremely often and is potentially a huge time sink), and depend heavily on
notifications from the objects themselves that changes have occurred, so that redisplay doesn’t
explicitly have to check each possible object. The redisplay mechanism also contains a great
deal of caching to further speed things up; some of this caching is contained within the various
displayable objects.

‘redisplay-output.c’ goes through the redisplay structures and converts them into calls to
device-specific methods to actually output the screen changes.

‘redisplay-x.c’ and ‘redisplay-tty.c’ are two implementations of these redisplay output
methods, for X frames and TTY frames, respectively.

14129 indent.c

This module contains various functions and Lisp primitives for converting between buffer
positions and screen positions. These functions call the redisplay mechanism to do most of the
work, and then examine the redisplay structures to get the necessary information. This module
needs work.
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14754 termcap.c
2141 terminfo.c
7253 tparam.c

These files contain functions for working with the termcap (BSD-style) and terminfo (System
V style) databases of terminal capabilities and escape sequences, used when XEmacs is displaying
in a TTY.

10869 cm.c
5876 cm.h

These files provide some miscellaneous TTY-output functions and should probably be merged
into ‘redisplay-tty.c’.

9.8 Modules for Interfacing with the File System

size name
------- ---------------------

43362 lstream.c
14240 lstream.h

These modules implement the stream Lisp object type. This is an internal-only Lisp object
that implements a generic buffering stream. The idea is to provide a uniform interface onto
all sources and sinks of data, including file descriptors, stdio streams, chunks of memory, Lisp
buffers, Lisp strings, etc. That way, I/O functions can be written to the stream interface and
can transparently handle all possible sources and sinks. (For example, the read function can
read data from a file, a string, a buffer, or even a function that is called repeatedly to return
data, without worrying about where the data is coming from or what-size chunks it is returned
in.)

Note that in the C code, streams are called lstreams (for “Lisp streams”) to distinguish them
from other kinds of streams, e.g. stdio streams and C++ I/O streams.

Similar to other subsystems in XEmacs, lstreams are separated into generic functions and
a set of methods for the different types of lstreams. ‘lstream.c’ provides implementations of
many different types of streams; others are provided, e.g., in ‘mule-coding.c’.

126926 fileio.c
This implements the basic primitives for interfacing with the file system. This includes

primitives for reading files into buffers, writing buffers into files, checking for the presence or
accessibility of files, canonicalizing file names, etc. Note that these primitives are usually not
invoked directly by the user: There is a great deal of higher-level Lisp code that implements the
user commands such as find-file and save-buffer. This is similar to the distinction between
the lower-level primitives in ‘editfns.c’ and the higher-level user commands in ‘commands.c’
and ‘simple.el’.

10960 filelock.c
This file provides functions for detecting clashes between different processes (e.g. XEmacs and

some external process, or two different XEmacs processes) modifying the same file. (XEmacs can
optionally use the ‘lock/’ subdirectory to provide a form of “locking” between different XEmacs
processes.) This module is also used by the low-level functions in ‘insdel.c’ to ensure that,
if the first modification is being made to a buffer whose corresponding file has been externally
modified, the user is made aware of this so that the buffer can be synched up with the external
changes if necessary.

4527 filemode.c
This file provides some miscellaneous functions that construct a ‘rwxr-xr-x’-type permissions

string (as might appear in an ‘ls’-style directory listing) given the information returned by the
stat() system call.
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22855 dired.c
2094 ndir.h

These files implement the XEmacs interface to directory searching. This includes a number of
primitives for determining the files in a directory and for doing filename completion. (Remember
that generic completion is handled by a different mechanism, in ‘minibuf.c’.)

‘ndir.h’ is a header file used for the directory-searching emulation functions provided in
‘sysdep.c’ (see section J below), for systems that don’t provide any directory-searching func-
tions. (On those systems, directories can be read directly as files, and parsed.)

4311 realpath.c

This file provides an implementation of the realpath() function for expanding symbolic
links, on systems that don’t implement it or have a broken implementation.

9.9 Modules for Other Aspects of the Lisp Interpreter and
Object System

size name
------- ---------------------
22290 elhash.c
2454 elhash.h
12169 hash.c
3369 hash.h

These files implement the hashtable Lisp object type. ‘hash.c’ and ‘hash.h’ provide a generic
C implementation of hash tables (which can stand independently of XEmacs), and ‘elhash.c’
and ‘elhash.h’ provide a Lisp interface onto the C hash tables using the hashtable Lisp object
type.

95691 specifier.c
11167 specifier.h

This module implements the specifier Lisp object type. This is primarily used for displayable
properties, and allows for values that are specific to a particular buffer, window, frame, device,
or device class, as well as a default value existing. This is used, for example, to control the height
of the horizontal scrollbar or the appearance of the default, bold, or other faces. The specifier
object consists of a number of specifications, each of which maps from a buffer, window, etc.
to a value. The function specifier-instance looks up a value given a window (from which a
buffer, frame, and device can be derived).

43058 chartab.c
6503 chartab.h
9918 casetab.c

‘chartab.c’ and ‘chartab.h’ implement the char table Lisp object type, which maps from
characters or certain sorts of character ranges to Lisp objects. The implementation of this object
type is optimized for the internal representation of characters. Char tables come in different
types, which affect the allowed object types to which a character can be mapped and also dictate
certain other properties of the char table.

‘casetab.c’ implements one sort of char table, the case table, which maps characters to other
characters of possibly different case. These are used by XEmacs to implement case-changing
primitives and to do case-insensitive searching.

49593 syntax.c
10200 syntax.h

This module implements syntax tables, another sort of char table that maps characters into
syntax classes that define the syntax of these characters (e.g. a parenthesis belongs to a class of
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‘open’ characters that have corresponding ‘close’ characters and can be nested). This module
also implements the Lisp scanner, a set of primitives for scanning over text based on syntax
tables. This is used, for example, to find the matching parenthesis in a command such as
forward-sexp, and by ‘font-lock.c’ to locate quoted strings, comments, etc.

10438 casefiddle.c

This module implements various Lisp primitives for upcasing, downcasing and capitalizing
strings or regions of buffers.

20234 rangetab.c

This module implements the range table Lisp object type, which provides for a mapping
from ranges of integers to arbitrary Lisp objects.

3201 opaque.c
2206 opaque.h

This module implements the opaque Lisp object type, an internal-only Lisp object that
encapsulates an arbitrary block of memory so that it can be managed by the Lisp allocation
system. To create an opaque object, you call make_opaque(), passing a pointer to a block of
memory. An object is created that is big enough to hold the memory, which is copied into the
object’s storage. The object will then stick around as long as you keep pointers to it, after which
it will be automatically reclaimed.

Opaque objects can also have an arbitrary mark method associated with them, in case the
block of memory contains other Lisp objects that need to be marked for garbage-collection
purposes. (If you need other object methods, such as a finalize method, you should just go
ahead and create a new Lisp object type – it’s not hard.)

8783 abbrev.c

This function provides a few primitives for doing dynamic abbreviation expansion. In
XEmacs, most of the code for this has been moved into Lisp. Some C code remains for speed and
because the primitive self-insert-command (which is executed for all self-inserting characters)
hooks into the abbrev mechanism. (self-insert-command is itself in C only for speed.)

21934 doc.c

This function provides primitives for retrieving the documentation strings of functions and
variables. These documentation strings contain certain special markers that get dynamically
expanded (e.g. a reverse-lookup is performed on some named functions to retrieve their current
key bindings). Some documentation strings (in particular, for the built-in primitives and pre-
loaded Lisp functions) are stored externally in a file ‘DOC’ in the ‘lib-src/’ directory and need
to be fetched from that file. (Part of the build stage involves building this file, and another
part involves constructing an index for this file and embedding it into the executable, so that
the functions in ‘doc.c’ do not have to search the entire ‘DOC’ file to find the appropriate
documentation string.)

13197 md5.c

This function provides a Lisp primitive that implements the MD5 secure hashing scheme,
used to create a large hash value of a string of data such that the data cannot be derived from
the hash value. This is used for various security applications on the Internet.

9.10 Modules for Interfacing with the Operating System

size name
------- ---------------------

33533 callproc.c
89697 process.c
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4663 process.h

These modules allow XEmacs to spawn and communicate with subprocesses and network
connections.

‘callproc.c’ implements (through the call-process primitive) what are called synchronous
subprocesses. This means that XEmacs runs a program, waits till it’s done, and retrieves its
output. A typical example might be calling the ‘ls’ program to get a directory listing.

‘process.c’ and ‘process.h’ implement asynchronous subprocesses. This means that
XEmacs starts a program and then continues normally, not waiting for the process to finish.
Data can be sent to the process or retrieved from it as it’s running. This is used for the shell
command (which provides a front end onto a shell program such as ‘csh’), the mail and news
readers implemented in XEmacs, etc. The result of calling start-process to start a subprocess
is a process object, a particular kind of object used to communicate with the subprocess. You
can send data to the process by passing the process object and the data to send-process, and
you can specify what happens to data retrieved from the process by setting properties of the
process object. (When the process sends data, XEmacs receives a process event, which says that
there is data ready. When dispatch-event is called on this event, it reads the data from the
process and does something with it, as specified by the process object’s properties. Typically,
this means inserting the data into a buffer or calling a function.) Another property of the process
object is called the sentinel, which is a function that is called when the process terminates.

Process objects are also used for network connections (connections to a process running on
another machine). Network connections are started with open-network-stream but otherwise
work just like subprocesses.

136029 sysdep.c
5986 sysdep.h

These modules implement most of the low-level, messy operating-system interface code. This
includes various device control (ioctl) operations for file descriptors, TTY’s, pseudo-terminals,
etc. (usually this stuff is fairly system-dependent; thus the name of this module), and emulation
of standard library functions and system calls on systems that don’t provide them or have broken
versions.

3605 sysdir.h
6708 sysfile.h
2027 sysfloat.h
2918 sysproc.h
745 syspwd.h
7643 syssignal.h
6892 systime.h
12477 systty.h
3487 syswait.h

These header files provide consistent interfaces onto system-dependent header files and system
calls. The idea is that, instead of including a standard header file like ‘<sys/param.h>’ (which
may or may not exist on various systems) or having to worry about whether all system provide
a particular preprocessor constant, or having to deal with the four different paradigms for
manipulating signals, you just include the appropriate ‘sys*.h’ header file, which includes all
the right system header files, defines and missing preprocessor constants, provides a uniform
interface onto system calls, etc.

‘sysdir.h’ provides a uniform interface onto directory-querying functions. (In some cases,
this is in conjunction with emulation functions in ‘sysdep.c’.)

‘sysfile.h’ includes all the necessary header files for standard system calls (e.g. read()),
ensures that all necessary open() and stat() preprocessor constants are defined, and possi-
bly (usually) substitutes sugared versions of read(), write(), etc. that automatically restart
interrupted I/O operations.
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‘sysfloat.h’ includes the necessary header files for floating-point operations.
‘sysproc.h’ includes the necessary header files for calling select(), fork(), execve(),

socket operations, and the like, and ensures that the FD_*() macros for descriptor-set manipu-
lations are available.

‘syspwd.h’ includes the necessary header files for obtaining information from ‘/etc/passwd’
(the functions are emulated under VMS).

‘syssignal.h’ includes the necessary header files for signal-handling and provides a uniform
interface onto the different signal-handling and signal-blocking paradigms.

‘systime.h’ includes the necessary header files and provides uniform interfaces for retrieving
the time of day, setting file access/modification times, getting the amount of time used by the
XEmacs process, etc.

‘systty.h’ buffers against the infinitude of different ways of controlling TTY’s.
‘syswait.h’ provides a uniform way of retrieving the exit status from a wait()ed-on process

(some systems use a union, others use an int).
7940 hpplay.c
10920 libsst.c
1480 libsst.h
3260 libst.h
15355 linuxplay.c
15849 nas.c
19133 sgiplay.c
15411 sound.c
7358 sunplay.c

These files implement the ability to play various sounds on some types of computers. You
have to configure your XEmacs with sound support in order to get this capability.

‘sound.c’ provides the generic interface. It implements various Lisp primitives and variables
that let you specify which sounds should be played in certain conditions. (The conditions are
identified by symbols, which are passed to ding to make a sound. Various standard functions
call this function at certain times; if sound support does not exist, a simple beep results.

‘sgiplay.c’, ‘sunplay.c’, ‘hpplay.c’, and ‘linuxplay.c’ interface to the machine’s speaker
for various different kind of machines. This is called native sound.

‘nas.c’ interfaces to a computer somewhere else on the network using the NAS (Network
Audio Server) protocol, playing sounds on that machine. This allows you to run XEmacs on a
remote machine, with its display set to your local machine, and have the sounds be made on
your local machine, provided that you have a NAS server running on your local machine.

‘libsst.c’, ‘libsst.h’, and ‘libst.h’ provide some additional functions for playing sound
on a Sun SPARC but are not currently in use.

44368 tooltalk.c
2137 tooltalk.h

These two modules implement an interface to the ToolTalk protocol, which is an interprocess
communication protocol implemented on some versions of Unix. ToolTalk is a high-level protocol
that allows processes to register themselves as providers of particular services; other processes
can then request a service without knowing or caring exactly who is providing the service. It is
similar in spirit to the DDE protocol provided under Microsoft Windows. ToolTalk is a part of
the new CDE (Common Desktop Environment) specification and is used to connect the parts
of the SPARCWorks development environment.

22695 getloadavg.c

This module provides the ability to retrieve the system’s current load average. (The way to
do this is highly system-specific, unfortunately, and requires a lot of special-case code.)
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148520 energize.c
6896 energize.h

This module provides code to interface to an Energize server (when XEmacs is used as part of
Lucid’s Energize development environment) and provides some other Energize-specific functions.
Much of the code in this module should be made more general-purpose and moved elsewhere,
but is no longer very relevant now that Lucid is defunct. It also hasn’t worked since version
19.12, since nobody has been maintaining it.

2861 sunpro.c

This module provides a small amount of code used internally at Sun to keep statistics on the
usage of XEmacs.

5548 broken-sun.h
3468 strcmp.c
2179 strcpy.c
1650 sunOS-fix.c

These files provide replacement functions and prototypes to fix numerous bugs in early re-
leases of SunOS 4.1.

11669 hftctl.c

This module provides some terminal-control code necessary on versions of AIX prior to 4.1.
1776 acldef.h
1602 chpdef.h
9032 uaf.h
105 vlimit.h
7145 vms-pp.c
1158 vms-pwd.h
26532 vmsfns.c
6038 vmsmap.c
695 vmspaths.h

17482 vmsproc.c
469 vmsproc.h

All of these files are used for VMS support, which has never worked in XEmacs.
28316 msdos.c
1472 msdos.h

These modules are used for MS-DOS support, which does not work in XEmacs.

9.11 Modules for Interfacing with X Windows

size name
------- ---------------------

3196 Emacs.ad.h

A file generated from ‘Emacs.ad’, which contains XEmacs-supplied fallback resources (so that
XEmacs has pretty defaults).

24242 EmacsFrame.c
6979 EmacsFrame.h
3351 EmacsFrameP.h

These modules implement an Xt widget class that encapsulates a frame. This is for ease
in integrating with Xt. The EmacsFrame widget covers the entire X window except for the
menubar; the scrollbars are positioned on top of the EmacsFrame widget.
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Warning: Abandon hope, all ye who enter here. This code took an ungodly amount of time
to get right, and is likely to fall apart mercilessly at the slightest change. Such is life under Xt.

8178 EmacsManager.c
1967 EmacsManager.h
1895 EmacsManagerP.h

These modules implement a simple Xt manager (i.e. composite) widget class that simply
lets its children set whatever geometry they want. It’s amazing that Xt doesn’t provide this
standardly, but on second thought, it makes sense, considering how amazingly broken Xt is.

13188 EmacsShell-sub.c
4588 EmacsShell.c
2180 EmacsShell.h
3133 EmacsShellP.h

These modules implement two Xt widget classes that are subclasses of the TopLevelShell and
TransientShell classes. This is necessary to deal with more brokenness that Xt has sadistically
thrust onto the backs of developers.

9673 xgccache.c
1111 xgccache.h

These modules provide functions for maintenance and caching of GC’s (graphics contexts)
under the X Window System. This code is junky and needs to be rewritten.

69181 xselect.c

This module provides an interface to the X Window System’s concept of selections, the
standard way for X applications to communicate with each other.

929 xintrinsic.h
1038 xintrinsicp.h
1579 xmmanagerp.h
1585 xmprimitivep.h

These header files are similar in spirit to the ‘sys*.h’ files and buffer against different im-
plementations of Xt and Motif.
• ‘xintrinsic.h’ should be included in place of ‘<Intrinsic.h>’.
• ‘xintrinsicp.h’ should be included in place of ‘<IntrinsicP.h>’.
• ‘xmmanagerp.h’ should be included in place of ‘<XmManagerP.h>’.
• ‘xmprimitivep.h’ should be included in place of ‘<XmPrimitiveP.h>’.

16930 xmu.c
936 xmu.h

These files provide an emulation of the Xmu library for those systems (i.e. HPUX) that don’t
provide it as a standard part of X.

4201 ExternalClient-Xlib.c
18083 ExternalClient.c
2035 ExternalClient.h
2104 ExternalClientP.h
22684 ExternalShell.c
1709 ExternalShell.h
1971 ExternalShellP.h
2478 extw-Xlib.c
1481 extw-Xlib.h
6565 extw-Xt.c
1430 extw-Xt.h

These files provide the external widget interface, which allows an XEmacs frame to appear as
a widget in another application. To do this, you have to configure with ‘--external-widget’.
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‘ExternalShell*’ provides the server (XEmacs) side of the connection.
‘ExternalClient*’ provides the client (other application) side of the connection. These files

are not compiled into XEmacs but are compiled into libraries that are then linked into your
application.

‘extw-*’ is common code that is used for both the client and server.
Don’t touch this code; something is liable to break if you do.

31014 epoch.c

This file provides some additional, Epoch-compatible, functionality for interfacing to the X
Window System.

9.12 Modules for Internationalization

size name
------- ---------------------

42836 mule-canna.c
16737 mule-ccl.c
41080 mule-charset.c
30176 mule-charset.h
146844 mule-coding.c
16588 mule-coding.h
6996 mule-mcpath.c
2899 mule-mcpath.h
57158 mule-wnnfns.c
3351 mule.c

These files implement the MULE (Asian-language) support. Note that MULE actually pro-
vides a general interface for all sorts of languages, not just Asian languages (although they are
generally the most complicated to support). This code is still in beta.

‘mule-charset.*’ and ‘mule-coding.*’ provide the heart of the XEmacs MULE support.
‘mule-charset.*’ implements the charset Lisp object type, which encapsulates a character set
(an ordered one- or two-dimensional set of characters, such as US ASCII or JISX0208 Japanese
Kanji).

‘mule-coding.*’ implements the coding-system Lisp object type, which encapsulates a
method of converting between different encodings. An encoding is a representation of a stream
of characters, possibly from multiple character sets, using a stream of bytes or words, and defines
(e.g.) which escape sequences are used to specify particular character sets, how the indices for
a character are converted into bytes (sometimes this involves setting the high bit; sometimes
complicated rearranging of the values takes place, as in the Shift-JIS encoding), etc.

‘mule-ccl.c’ provides the CCL (Code Conversion Language) interpreter. CCL is similar in
spirit to Lisp byte code and is used to implement converters for custom encodings.

‘mule-canna.c’ and ‘mule-wnnfns.c’ implement interfaces to external programs used to
implement the Canna and WNN input methods, respectively. This is currently in beta.

‘mule-mcpath.c’ provides some functions to allow for pathnames containing extended char-
acters. This code is fragmentary, obsolete, and completely non-working. Instead, pathname-
coding-system is used to specify conversions of names of files and directories. The standard C
I/O functions like ‘open()’ are wrapped so that conversion occurs automatically.

‘mule.c’ provides a few miscellaneous things that should probably be elsewhere.
9400 intl.c

This provides some miscellaneous internationalization code for implementing message trans-
lation and interfacing to the Ximp input method. None of this code is currently working.
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1764 iso-wide.h

This contains leftover code from an earlier implementation of Asian-language support, and
is not currently used.
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10 Allocation of Objects in XEmacs Lisp

10.1 Introduction to Allocation

Emacs Lisp, like all Lisps, has garbage collection. This means that the programmer never
has to explicitly free (destroy) an object; it happens automatically when the object becomes
inaccessible. Most experts agree that garbage collection is a necessity in a modern, high-level
language. Its omission from C stems from the fact that C was originally designed to be a nice
abstract layer on top of assembly language, for writing kernels and basic system utilities rather
than large applications.

Lisp objects can be created by any of a number of Lisp primitives. Most object types have
one or a small number of basic primitives for creating objects. For conses, the basic primitive
is cons; for vectors, the primitives are make-vector and vector; for symbols, the primitives
are make-symbol and intern; etc. Some Lisp objects, especially those that are primarily used
internally, have no corresponding Lisp primitives. Every Lisp object, though, has at least one
C primitive for creating it.

Recall from section (VII) that a Lisp object, as stored in a 32-bit or 64-bit word, has a mark
bit, a few tag bits, and a “value” that occupies the remainder of the bits. We can separate the
different Lisp object types into four broad categories:
• (a) Those for whom the value directly represents the contents of the Lisp object. Only

two types are in this category: integers and characters. No special allocation or garbage
collection is necessary for such objects. Lisp objects of these types do not need to be
GCPROed.

In the remaining three categories, the value is a pointer to a structure.
• (b) Those for whom the tag directly specifies the type. Recall that there are only three tag

bits; this means that at most five types can be specified this way. The most commonly-
used types are stored in this format; this includes conses, strings, vectors, and sometimes
symbols. With the exception of vectors, objects in this category are allocated in frob blocks,
i.e. large blocks of memory that are subdivided into individual objects. This saves a lot
on malloc overhead, since there are typically quite a lot of these objects around, and the
objects are small. (A cons, for example, occupies 8 bytes on 32-bit machines – 4 bytes for
each of the two objects it contains.) Vectors are individually malloc()ed since they are of
variable size. (It would be possible, and desirable, to allocate vectors of certain small sizes
out of frob blocks, but it isn’t currently done.) Strings are handled specially: Each string
is allocated in two parts, a fixed size structure containing a length and a data pointer, and
the actual data of the string. The former structure is allocated in frob blocks as usual, and
the latter data is stored in string chars blocks and is relocated during garbage collection to
eliminate holes.

In the remaining two categories, the type is stored in the object itself. The tag for all
such objects is the generic lrecord (Lisp Record) tag. The first four bytes (or eight, for 64-bit
machines) of the object’s structure are a pointer to a structure that describes the object’s type,
which includes method pointers and a pointer to a string naming the type. Note that it’s possible
to save some space by using a one- or two-byte tag, rather than a four- or eight-byte pointer to
store the type, but it’s not clear it’s worth making the change.
• (c) Those lrecords that are allocated in frob blocks (see above). This includes the objects

that are most common and relatively small, and includes floats, bytecodes, symbols (when
not in category (b)), extents, events, and markers. With the cleanup of frob blocks done in
19.12, it’s not terribly hard to add more objects to this category, but it’s a bit trickier than
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adding an object type to type (d) (esp. if the object needs a finalization method), and is
not likely to save much space unless the object is small and there are many of them. (In
fact, if there are very few of them, it might actually waste space.)

• (d) Those lrecords that are individually malloc()ed. These are called lcrecords. All other
types are in this category. Adding a new type to this category is comparatively easy, and
all types added since 19.8 (when the current allocation scheme was devised, by Richard
Mlynarik), with the exception of the character type, have been in this category.

Note that bit vectors are a bit of a special case. They are simple lrecords as in category
(c), but are individually malloc()ed like vectors. You can basically view them as exactly like
vectors except that their type is stored in lrecord fashion rather than in directly-tagged fashion.

Note that FSF Emacs redesigned their object system in 19.29 to follow a similar scheme.
However, given RMS’s expressed dislike for data abstraction, the FSF scheme is not nearly as
clean or as easy to extend. (FSF calls items of type (c) Lisp_Misc and items of type (d) Lisp_
Vectorlike, with separate tags for each, although Lisp_Vectorlike is also used for vectors.)

10.2 Garbage Collection

Garbage collection is simple in theory but tricky to implement. Emacs Lisp uses the oldest
garbage collection method, called mark and sweep. Garbage collection begins by starting with
all accessible locations (i.e. all variables and other slots where Lisp objects might occur) and
recursively traversing all objects accessible from those slots, marking each one that is found.
We then go through all of memory and free each object that is not marked, and unmarking
each object that is marked. Note that “all of memory” means all currently allocated objects.
Traversing all these objects means traversing all frob blocks, all vectors (which are chained in
one big list), and all lcrecords (which are likewise chained).

Note that, when an object is marked, the mark has to occur inside of the object’s structure,
rather than in the 32-bit Lisp_Object holding the object’s pointer; i.e. you can’t just set the
pointer’s mark bit. This is because there may be many pointers to the same object. This means
that the method of marking an object can differ depending on the type. The different marking
methods are approximately as follows:
1. For conses, the mark bit of the car is set.
2. For strings, the mark bit of the string’s plist is set.
3. For symbols when not lrecords, the mark bit of the symbol’s plist is set.
4. For vectors, the length is negated after adding 1.
5. For lrecords, the pointer to the structure describing the type is changed (see below).
6. Integers and characters do not need to be marked, since no allocation occurs for them.

The details of this are in the mark_object() function.
Note that any code that operates during garbage collection has to be especially careful because

of the fact that some objects may be marked and as such may not look like they normally do.
In particular:

Some object pointers may have their mark bit set. This will make FOOBARP() predicates
fail. Use GC_FOOBARP() to deal with this.

• Even if you clear the mark bit, FOOBARP() will still fail for lrecords because the imple-
mentation pointer has been changed (see below). GC_FOOBARP() will correctly deal with
this.

• Vectors have their size field munged, so anything that looks at this field will fail.
• Note that XFOOBAR() macros will work correctly on object pointers with their mark bit set,

because the logical shift operations that remove the tag also remove the mark bit.
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Finally, note that garbage collection can be invoked explicitly by calling garbage-collect
but is also called automatically by eval, once a certain amount of memory has been allocated
since the last garbage collection (according to gc-cons-threshold).

10.3 GCPROing

GCPROing is one of the ugliest and trickiest parts of Emacs internals. The basic idea is that
whenever garbage collection occurs, all in-use objects must be reachable somehow or other from
one of the roots of accessibility. The roots of accessibility are:
1. All objects that have been staticpro()d. This is used for any global C variables that hold

Lisp objects. A call to staticpro() happens implicitly as a result of any symbols declared
with defsymbol() and any variables declared with DEFVAR_FOO(). You need to explicitly
call staticpro() (in the vars_of_foo() method of a module) for other global C variables
holding Lisp objects. (This typically includes internal lists and such things.)
Note that obarray is one of the staticpro()d things. Therefore, all functions and variables
get marked through this.

2. Any shadowed bindings that are sitting on the specpdl stack.
3. Any objects sitting in currently active (Lisp) stack frames, catches, and condition cases.
4. A couple of special-case places where active objects are located.
5. Anything currently marked with GCPRO.

Marking with GCPRO is necessary because some C functions (quite a lot, in fact), allocate
objects during their operation. Quite frequently, there will be no other pointer to the object
while the function is running, and if a garbage collection occurs and the object needs to be
referenced again, bad things will happen. The solution is to mark those objects with GCPRO.
Unfortunately this is easy to forget, and there is basically no way around this problem. Here
are some rules, though:
1. For every GCPROn, there have to be declarations of struct gcpro gcpro1, gcpro2, etc.
2. You must UNGCPRO anything that’s GCPROed, and you must not UNGCPRO if you haven’t

GCPROed. Getting either of these wrong will lead to crashes, often in completely random
places unrelated to where the problem lies.

3. The way this actually works is that all currently active GCPROs are chained through the
struct gcpro local variables, with the variable ‘gcprolist’ pointing to the head of the list
and the nth local gcpro variable pointing to the first gcpro variable in the next enclosing
stack frame. Each GCPROed thing is an lvalue, and the struct gcpro local variable contains
a pointer to this lvalue. This is why things will mess up badly if you don’t pair up the
GCPROs and UNGCPROs – you will end up with gcprolists containing pointers to struct
gcpros or local Lisp_Object variables in no-longer-active stack frames.

4. It is actually possible for a single struct gcpro to protect a contiguous array of any number
of values, rather than just a single lvalue. To effect this, call GCPROn as usual on the first
object in the array and then set gcpron.nvars.

5. Strings are relocated. What this means in practice is that the pointer obtained using
XSTRING_DATA() is liable to change at any time, and you should never keep it around past
any function call, or pass it as an argument to any function that might cause a garbage
collection. This is why a number of functions accept either a “non-relocatable” char *
pointer or a relocatable Lisp string, and only access the Lisp string’s data at the very last
minute. In some cases, you may end up having to alloca() some space and copy the
string’s data into it.

6. By convention, if you have to nest GCPRO’s, use NGCPROn (along with struct gcpro
ngcpro1, ngcpro2, etc.), NNGCPROn, etc. This avoids compiler warnings about shadowed
locals.
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7. It is always better to err on the side of extra GCPROs rather than too few. The extra cycles
spent on this are almost never going to make a whit of difference in the speed of anything.

8. The general rule to follow is that caller, not callee, GCPROs. That is, you should not have
to explicitly GCPRO any Lisp objects that are passed in as parameters.
One exception from this rule is if you ever plan to change the parameter value, and store a
new object in it. In that case, you must GCPRO the parameter, because otherwise the new
object will not be protected.
So, if you create any Lisp objects (remember, this happens in all sorts of circumstances,
e.g. with Fcons(), etc.), you are responsible for GCPROing them, unless you are absolutely
sure that there’s no possibility that a garbage-collection can occur while you need to use
the object. Even then, consider GCPROing.

9. A garbage collection can occur whenever anything calls Feval, or whenever a QUIT can
occur where execution can continue past this. (Remember, this is almost anywhere.)

10. If you have the least smidgeon of doubt about whether you need to GCPRO, you should GCPRO.
11. Beware of GCPROing something that is uninitialized. If you have any shade of doubt about

this, initialize all your variables to Qnil.
12. Be careful of traps, like calling Fcons() in the argument to another function. By the “caller

protects” law, you should be GCPROing the newly-created cons, but you aren’t. A certain
number of functions that are commonly called on freshly created stuff (e.g. nconc2(),
Fsignal()), break the “caller protects” law and go ahead and GCPRO their arguments so as
to simplify things, but make sure and check if it’s OK whenever doing something like this.

13. Once again, remember to GCPRO! Bugs resulting from insufficient GCPROing are intermittent
and extremely difficult to track down, often showing up in crashes inside of garbage-
collect or in weirdly corrupted objects or even in incorrect values in a totally different
section of code.

Given the extremely error-prone nature of the GCPRO scheme, and the difficulties in tracking
down, it should be considered a deficiency in the XEmacs code. A solution to this problem would
involve implementing so-called conservative garbage collection for the C stack. That involves
looking through all of stack memory and treating anything that looks like a reference to an
object as a reference. This will result in a few objects not getting collected when they should,
but it obviates the need for GCPROing, and allows garbage collection to happen at any point at
all, such as during object allocation.

10.4 Integers and Characters

Integer and character Lisp objects are created from integers using the macros XSETINT()
and XSETCHAR() or the equivalent functions make_int() and make_char(). (These are actually
macros on most systems.) These functions basically just do some moving of bits around, since
the integral value of the object is stored directly in the Lisp_Object.

XSETINT() and the like will truncate values given to them that are too big; i.e. you won’t
get the value you expected but the tag bits will at least be correct.

10.5 Allocation from Frob Blocks

The uninitialized memory required by a Lisp_Object of a particular type is allocated us-
ing ALLOCATE_FIXED_TYPE(). This only occurs inside of the lowest-level object-creating func-
tions in ‘alloc.c’: Fcons(), make_float(), Fmake_byte_code(), Fmake_symbol(), allocate_
extent(), allocate_event(), Fmake_marker(), and make_uninit_string(). The idea is that,
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for each type, there are a number of frob blocks (each 2K in size); each frob block is divided
up into object-sized chunks. Each frob block will have some of these chunks that are currently
assigned to objects, and perhaps some that are free. (If a frob block has nothing but free chunks,
it is freed at the end of the garbage collection cycle.) The free chunks are stored in a free list,
which is chained by storing a pointer in the first four bytes of the chunk. (Except for the free
chunks at the end of the last frob block, which are handled using an index which points past the
end of the last-allocated chunk in the last frob block.) ALLOCATE_FIXED_TYPE() first tries to
retrieve a chunk from the free list; if that fails, it calls ALLOCATE_FIXED_TYPE_FROM_BLOCK(),
which looks at the end of the last frob block for space, and creates a new frob block if there is
none. (There are actually two versions of these macros, one of which is more defensive but less
efficient and is used for error-checking.)

10.6 lrecords

[see ‘lrecord.h’]
All lrecords have at the beginning of their structure a struct lrecord_header. This just con-

tains a pointer to a struct lrecord_implementation, which is a structure containing method
pointers and such. There is one of these for each type, and it is a global, constant, statically-
declared structure that is declared in the DEFINE_LRECORD_IMPLEMENTATION() macro. (This
macro actually declares an array of two struct lrecord_implementation structures. The first
one contains all the standard method pointers, and is used in all normal circumstances. During
garbage collection, however, the lrecord is marked by bumping its implementation pointer by
one, so that it points to the second structure in the array. This structure contains a special
indication in it that it’s a marked-object structure: the finalize method is the special func-
tion this_marks_a_marked_record(), and all other methods are null pointers. At the end of
garbage collection, all lrecords will either be reclaimed or unmarked by decrementing their im-
plementation pointers, so this second structure pointer will never remain past garbage collection.

Simple lrecords (of type (c) above) just have a struct lrecord_header at their beginning.
lcrecords, however, actually have a struct lcrecord_header. This, in turn, has a struct
lrecord_header at its beginning, so sanity is preserved; but it also has a pointer used to chain
all lcrecords together, and a special ID field used to distinguish one lcrecord from another. (This
field is used only for debugging and could be removed, but the space gain is not significant.)

Simple lrecords are created using ALLOCATE_FIXED_TYPE(), just like for other frob blocks.
The only change is that the implementation pointer must be initialized correctly. (The im-
plementation structure for an lrecord, or rather the pointer to it, is named lrecord_float,
lrecord_extent, lrecord_buffer, etc.)

lcrecords are created using alloc_lcrecord(). This takes a size to allocate and an im-
plementation pointer. (The size needs to be passed because some lcrecords, such as window
configurations, are of variable size.) This basically just malloc()s the storage, initializes the
struct lcrecord_header, and chains the lcrecord onto the head of the list of all lcrecords,
which is stored in the variable all_lcrecords. The calls to alloc_lcrecord() generally occur
in the lowest-level allocation function for each lrecord type.

Whenever you create an lrecord, you need to call either DEFINE_LRECORD_IMPLEMENTATION()
or DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(). This needs to be specified in a C file, at the
top level. What this actually does is define and initialize the implementation structure for the
lrecord. (And possibly declares a function error_check_foo() that implements the XFOO()
macro when error-checking is enabled.) The arguments to the macros are the actual type name
(this is used to construct the C variable name of the lrecord implementation structure and
related structures using the ‘##’ macro concatenation operator), a string that names the type
on the Lisp level (this may not be the same as the C type name; typically, the C type name
has underscores, while the Lisp string has dashes), various method pointers, and the name of
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the C structure that contains the object. The methods are used to encapsulate type-specific
information about the object, such as how to print it or mark it for garbage collection, so that
it’s easy to add new object types without having to add a specific case for each new type in a
bunch of different places.

The difference between DEFINE_LRECORD_IMPLEMENTATION() and DEFINE_LRECORD_
SEQUENCE_IMPLEMENTATION() is that the former is used for fixed-size object types and the
latter is for variable-size object types. Most object types are fixed-size; some complex types,
however (e.g. window configurations), are variable-size. Variable-size object types have an
extra method, which is called to determine the actual size of a particular object of that type.
(Currently this is only used for keeping allocation statistics.)

For the purpose of keeping allocation statistics, the allocation engine keeps a list of all the
different types that exist. Note that, since DEFINE_LRECORD_IMPLEMENTATION() is a macro that
is specified at top-level, there is no way for it to add to the list of all existing types. What
happens instead is that each implementation structure contains in it a dynamically assigned
number that is particular to that type. (Or rather, it contains a pointer to another structure
that contains this number. This evasiveness is done so that the implementation structure can
be declared const.) In the sweep stage of garbage collection, each lrecord is examined to see if
its implementation structure has its dynamically-assigned number set. If not, it must be a new
type, and it is added to the list of known types and a new number assigned. The number is
used to index into an array holding the number of objects of each type and the total memory
allocated for objects of that type. The statistics in this array are also computed during the
sweep stage. These statistics are returned by the call to garbage-collect and are printed out
at the end of the loadup phase.

Note that for every type defined with a DEFINE_LRECORD_*() macro, there needs to be a
DECLARE_LRECORD_IMPLEMENTATION() somewhere in a ‘.h’ file, and this ‘.h’ file needs to be
included by ‘inline.c’.

Furthermore, there should generally be a set of XFOOBAR(), FOOBARP(), etc. macros in a
‘.h’ (or occasionally ‘.c’) file. To create one of these, copy an existing model and modify as
necessary.

The various methods in the lrecord implementation structure are:
1. A mark method. This is called during the marking stage and passed a function pointer

(usually the mark_object() function), which is used to mark an object. All Lisp objects
that are contained within the object need to be marked by applying this function to them.
The mark method should also return a Lisp object, which should be either nil or an object
to mark. (This can be used in lieu of calling mark_object() on the object, to reduce the
recursion depth, and consequently should be the most heavily nested sub-object, such as a
long list.)
Please note: When the mark method is called, garbage collection is in progress, and special
precautions need to be taken when accessing objects; see section (B) above.
If your mark method does not need to do anything, it can be NULL.

2. A print method. This is called to create a printed representation of the object, whenever
princ, prin1, or the like is called. It is passed the object, a stream to which the output is to
be directed, and an escapeflag which indicates whether the object’s printed representation
should be escaped so that it is readable. (This corresponds to the difference between
princ and prin1.) Basically, escaped means that strings will have quotes around them
and confusing characters in the strings such as quotes, backslashes, and newlines will be
backslashed; and that special care will be taken to make symbols print in a readable fashion
(e.g. symbols that look like numbers will be backslashed). Other readable objects should
perhaps pass escapeflag on when sub-objects are printed, so that readability is preserved
when necessary (or if not, always pass in a 1 for escapeflag). Non-readable objects should
in general ignore escapeflag, except that some use it as an indication that more verbose
output should be given.
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Sub-objects are printed using print_internal(), which takes exactly the same arguments
as are passed to the print method.
Literal C strings should be printed using write_c_string(), or write_string_1() for
non-null-terminated strings.
Functions that do not have a readable representation should check the print_readably
flag and signal an error if it is set.
If you specify NULL for the print method, the default_object_printer() will be used.

3. A finalize method. This is called at the beginning of the sweep stage on lcrecords that are
about to be freed, and should be used to perform any extra object cleanup. This typically
involves freeing any extra malloc()ed memory associated with the object, releasing any
operating-system and window-system resources associated with the object (e.g. pixmaps,
fonts), etc.
The finalize method can be NULL if nothing needs to be done.
WARNING #1: The finalize method is also called at the end of the dump phase; this time
with the for disksave parameter set to non-zero. The object is not about to disappear, so
you have to make sure to not free any extra malloc()ed memory if you’re going to need it
later. (Also, signal an error if there are any operating-system and window-system resources
here, because they can’t be dumped.)
Finalize methods should, as a rule, set to zero any pointers after they’ve been freed, and
check to make sure pointers are not zero before freeing. Although I’m pretty sure that
finalize methods are not called twice on the same object (except for the for_disksave
proviso), we’ve gotten nastily burned in some cases by not doing this.
WARNING #2: The finalize method is only called for lcrecords, not for simply lrecords.
If you need a finalize method for simple lrecords, you have to stick it in the ADDITIONAL_
FREE_foo() macro in ‘alloc.c’.
WARNING #3: Things are in an extremely bizarre state when ADDITIONAL_FREE_foo()
is called, so you have to be incredibly careful when writing one of these functions. See the
comment in gc_sweep(). If you ever have to add one of these, consider using an lcrecord
or dealing with the problem in a different fashion.

4. An equal method. This compares the two objects for similarity, when equal is called. It
should compare the contents of the objects in some reasonable fashion. It is passed the two
objects and a depth value, which is used to catch circular objects. To compare sub-Lisp-
objects, call internal_equal() and bump the depth value by one. If this value gets too
high, a circular-object error will be signaled.
If this is NULL, objects are equal only when they are eq, i.e. identical.

5. A hash method. This is used to hash objects when they are to be compared with equal.
The rule here is that if two objects are equal, they must hash to the same value; i.e. your
hash function should use some subset of the sub-fields of the object that are compared in
the “equal” method. If you specify this method as NULL, the object’s pointer will be used
as the hash, which will fail if the object has an equal method, so don’t do this.
To hash a sub-Lisp-object, call internal_hash(). Bump the depth by one, just like in the
“equal” method.
To convert a Lisp object directly into a hash value (using its pointer), use LISP_HASH().
This is what happens when the hash method is NULL.
To hash two or more values together into a single value, use HASH2(), HASH3(), HASH4(),
etc.

6. getprop, putprop, remprop, and plist methods. These are used for object types that have
properties. I don’t feel like documenting them here. If you create one of these objects, you
have to use different macros to define them, i.e. DEFINE_LRECORD_IMPLEMENTATION_WITH_
PROPS() or DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS().
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7. A size in bytes method, when the object is of variable-size. (i.e. declared with a _SEQUENCE_
IMPLEMENTATION macro.) This should simply return the object’s size in bytes, exactly as
you might expect. For an example, see the methods for window configurations and opaques.

10.7 Low-level allocation

Memory that you want to allocate directly should be allocated using xmalloc() rather than
malloc(). This implements error-checking on the return value, and once upon a time did some
more vital stuff (i.e. BLOCK_INPUT, which is no longer necessary). Free using xfree(), and
realloc using xrealloc(). Note that xmalloc() will do a non-local exit if the memory can’t be
allocated. (Many functions, however, do not expect this, and thus XEmacs will likely crash if
this happens. This is a bug. If you can, you should strive to make your function handle this
OK. However, it’s difficult in the general circumstance, perhaps requiring extra unwind-protects
and such.)

Note that XEmacs provides two separate replacements for the standard malloc() library
function. These are called old GNU malloc (‘malloc.c’) and new GNU malloc (‘gmalloc.c’),
respectively. New GNU malloc is better in pretty much every way than old GNU malloc, and
should be used if possible. (It used to be that on some systems, the old one worked but the new
one didn’t. I think this was due specifically to a bug in SunOS, which the new one now works
around; so I don’t think the old one ever has to be used any more.) The primary difference
between both of these mallocs and the standard system malloc is that they are much faster, at
the expense of increased space. The basic idea is that memory is allocated in fixed chunks of
powers of two. This allows for basically constant malloc time, since the various chunks can just
be kept on a number of free lists. (The standard system malloc typically allocates arbitrary-
sized chunks and has to spend some time, sometimes a significant amount of time, walking the
heap looking for a free block to use and cleaning things up.) The new GNU malloc improves on
things by allocating large objects in chunks of 4096 bytes rather than in ever larger powers of
two, which results in ever larger wastage. There is a slight speed loss here, but it’s of doubtful
significance.

NOTE: Apparently there is a third-generation GNU malloc that is significantly better than
the new GNU malloc, and should probably be included in XEmacs.

There is also the relocating allocator, ‘ralloc.c’. This actually moves blocks of memory
around so that the sbrk() pointer shrunk and virtual memory released back to the system. On
some systems, this is a big win. On all systems, it causes a noticeable (and sometimes huge)
speed penalty, so I turn it off by default. ‘ralloc.c’ only works with the new GNU malloc in
‘gmalloc.c’. There are also two versions of ‘ralloc.c’, one that uses mmap() rather than block
copies to move data around. This purports to be faster, although that depends on the amount
of data that would have had to be block copied and the system-call overhead for mmap(). I don’t
know exactly how this works, except that the relocating-allocation routines are pretty much
used only for the memory allocated for a buffer, which is the biggest consumer of space, esp. of
space that may get freed later.

Note that the GNU mallocs have some “memory warning” facilities. XEmacs taps into them
and issues a warning through the standard warning system, when memory gets to 75%, 85%,
and 95% full. (On some systems, the memory warnings are not functional.)

Allocated memory that is going to be used to make a Lisp object is created using allocate_
lisp_storage(). This calls xmalloc() but also verifies that the pointer to the memory can fit
into a Lisp word (remember that some bits are taken away for a type tag and a mark bit). If
not, an error is issued through memory_full(). allocate_lisp_storage() is called by alloc_
lcrecord(), ALLOCATE_FIXED_TYPE(), and the vector and bit-vector creation routines. These
routines also call INCREMENT_CONS_COUNTER() at the appropriate times; this keeps statistics on
how much memory is allocated, so that garbage-collection can be invoked when the threshold is
reached.
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10.8 Pure Space

Not yet documented.

10.9 Cons

Conses are allocated in standard frob blocks. The only thing to note is that conses can be
explicitly freed using free_cons() and associated functions free_list() and free_alist().
This immediately puts the conses onto the cons free list, and decrements the statistics on memory
allocation appropriately. This is used to good effect by some extremely commonly-used code,
to avoid generating extra objects and thereby triggering GC sooner. However, you have to be
extremely careful when doing this. If you mess this up, you will get BADLY BURNED, and it
has happened before.

10.10 Vector

As mentioned above, each vector is malloc()ed individually, and all are threaded through
the variable all_vectors. Vectors are marked strangely during garbage collection, by kludging
the size field. Note that the struct Lisp_Vector is declared with its contents field being a
stretchy array of one element. It is actually malloc()ed with the right size, however, and access
to any element through the contents array works fine.

10.11 Bit Vector

Bit vectors work exactly like vectors, except for more complicated code to access an individual
bit, and except for the fact that bit vectors are lrecords while vectors are not. (The only difference
here is that there’s an lrecord implementation pointer at the beginning and the tag field in bit
vector Lisp words is “lrecord” rather than “vector”.)

10.12 Symbol

Symbols are also allocated in frob blocks. Note that the code exists for symbols to be either
lrecords (category (c) above) or simple types (category (b) above), and are lrecords by default
(I think), although there is no good reason for this.

Note that symbols in the awful horrible obarray structure are chained through their next
field.

Remember that intern looks up a symbol in an obarray, creating one if necessary.

10.13 Marker

Markers are allocated in frob blocks, as usual. They are kept in a buffer unordered, but in
a doubly-linked list so that they can easily be removed. (Formerly this was a singly-linked list,
but in some cases garbage collection took an extraordinarily long time due to the O(N^2) time
required to remove lots of markers from a buffer.) Markers are removed from a buffer in the
finalize stage, in ADDITIONAL_FREE_marker().
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10.14 String

As mentioned above, strings are a special case. A string is logically two parts, a fixed-size
object (containing the length, property list, and a pointer to the actual data), and the actual
data in the string. The fixed-size object is a struct Lisp_String and is allocated in frob blocks,
as usual. The actual data is stored in special string-chars blocks, which are 8K blocks of memory.
Currently-allocated strings are simply laid end to end in these string-chars blocks, with a pointer
back to the struct Lisp_String stored before each string in the string-chars block. When a
new string needs to be allocated, the remaining space at the end of the last string-chars block
is used if there’s enough, and a new string-chars block is created otherwise.

There are never any holes in the string-chars blocks due to the string compaction and reloca-
tion that happens at the end of garbage collection. During the sweep stage of garbage collection,
when objects are reclaimed, the garbage collector goes through all string-chars blocks, looking
for unused strings. Each chunk of string data is preceded by a pointer to the corresponding
struct Lisp_String, which indicates both whether the string is used and how big the string
is, i.e. how to get to the next chunk of string data. Holes are compressed by block-copying the
next string into the empty space and relocating the pointer stored in the corresponding struct
Lisp_String. This means you have to be careful with strings in your code. See the section
above on GCPROing.

Note that there is one situation not handled: a string that is too big to fit into a string-chars
block. Such strings, called big strings, are all malloc()ed as their own block. (#### Although
it would make more sense for the threshold for big strings to be somewhat lower, e.g. 1/2 or
1/4 the size of a string-chars block. It seems that this was indeed the case formerly – indeed,
the threshold was set at 1/8 – but Mly forgot about this when rewriting things for 19.8.)

Note also that the string data in string-chars blocks is padded as necessary so that proper
alignment constraints on the struct Lisp_String back pointers are maintained.

Finally, strings can be resized. This happens in Mule when a character is substituted with a
different-length character, or during modeline frobbing. (You could also export this to Lisp, but
it’s not done so currently.) Resizing a string is a potentially tricky process. If the change is small
enough that the padding can absorb it, nothing other than a simple memory move needs to be
done. Keep in mind, however, that the string can’t shrink too much because the offset to the next
string in the string-chars block is computed by looking at the length and rounding to the nearest
multiple of four or eight. If the string would shrink or expand beyond the correct padding, new
string data needs to be allocated at the end of the last string-chars block and the data moved
appropriately. This leaves some dead string data, which is marked by putting a special marker
of 0xFFFFFFFF in the struct Lisp_String pointer before the data (there’s no real struct
Lisp_String to point to and relocate), and storing the size of the dead string data (which would
normally be obtained from the now-non-existent struct Lisp_String) at the beginning of the
dead string data gap. The string compactor recognizes this special 0xFFFFFFFF marker and
handles it correctly.

10.15 Bytecode

Not yet documented.
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11 Events and the Event Loop

11.1 Introduction to Events

An event is an object that encapsulates information about an interesting occurrence in the
operating system. Events are generated either by user action, direct (e.g. typing on the keyboard
or moving the mouse) or indirect (moving another window, thereby generating an expose event
on an Emacs frame), or as a result of some other typically asynchronous action happening, such
as output from a subprocess being ready or a timer expiring. Events come into the system in
an asynchronous fashion (typically through a callback being called) and are converted into a
synchronous event queue (first-in, first-out) in a process that we will call collection.

Note that each application has its own event queue. (It is immaterial whether the collection
process directly puts the events in the proper application’s queue, or puts them into a single
system queue, which is later split up.)

The most basic level of event collection is done by the operating system or window system.
Typically, XEmacs does its own event collection as well. Often there are multiple layers of
collection in XEmacs, with events from various sources being collected into a queue, which is
then combined with other sources to go into another queue (i.e. a second level of collection),
with perhaps another level on top of this, etc.

XEmacs has its own types of events (called Emacs events), which provides an abstract layer
on top of the system-dependent nature of the most basic events that are received. Part of the
complex nature of the XEmacs event collection process involves converting from the operating-
system events into the proper Emacs events – there may not be a one-to-one correspondence.

Emacs events are documented in ‘events.h’; I’ll discuss them later.

11.2 Main Loop

The command loop is the top-level loop that the editor is always running. It loops endlessly,
calling next-event to retrieve an event and dispatch-event to execute it. dispatch-event
does the appropriate thing with non-user events (process, timeout, magic, eval, mouse motion);
this involves calling a Lisp handler function, redrawing a newly-exposed part of a frame, reading
subprocess output, etc. For user events, dispatch-event looks up the event in relevant keymaps
or menubars; when a full key sequence or menubar selection is reached, the appropriate function
is executed. dispatch-event may have to keep state across calls; this is done in the “command-
builder” structure associated with each console (remember, there’s usually only one console),
and the engine that looks up keystrokes and constructs full key sequences is called the command
builder. This is documented elsewhere.

The guts of the command loop are in command_loop_1(). This function doesn’t catch errors,
though – that’s the job of command_loop_2(), which is a condition-case (i.e. error-trapping)
wrapper around command_loop_1(). command_loop_1() never returns, but may get thrown out
of.

When an error occurs, cmd_error() is called, which usually invokes the Lisp error handler
in command-error; however, a default error handler is provided if command-error is nil (e.g.
during startup). The purpose of the error handler is simply to display the error message and do
associated cleanup; it does not need to throw anywhere. When the error handler finishes, the
condition-case in command_loop_2() will finish and command_loop_2() will reinvoke command_
loop_1().
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command_loop_2() is invoked from three places: from initial_command_loop() (called
from main() at the end of internal initialization), from the Lisp function recursive-edit, and
from call_command_loop().

call_command_loop() is called when a macro is started and when the minibuffer is entered;
normal termination of the macro or minibuffer causes a throw out of the recursive command
loop. (To execute-kbd-macro for macros and exit for minibuffers. Note also that the low-level
minibuffer-entering function, read-minibuffer-internal, provides its own error handling and
does not need command_loop_2()’s error encapsulation; so it tells call_command_loop() to
invoke command_loop_1() directly.)

Note that both read-minibuffer-internal and recursive-edit set up a catch for exit; this is
why abort-recursive-edit, which throws to this catch, exits out of either one.

initial_command_loop(), called from main(), sets up a catch for top-level when invoking
command_loop_2(), allowing functions to throw all the way to the top level if they really need
to. Before invoking command_loop_2(), initial_command_loop() calls top_level_1(), which
handles all of the startup stuff (creating the initial frame, handling the command-line options,
loading the user’s ‘.emacs’ file, etc.). The function that actually does this is in Lisp and
is pointed to by the variable top-level; normally this function is normal-top-level. top_
level_1() is just an error-handling wrapper similar to command_loop_2(). Note also that
initial_command_loop() sets up a catch for top-level when invoking top_level_1(), just
like when it invokes command_loop_2().

11.3 Specifics of the Event Gathering Mechanism

Here is an approximate diagram of the collection processes at work in XEmacs, under TTY’s
(TTY’s are simpler than X so we’ll look at this first):

asynch. asynch. asynch. asynch. [Collectors in
kbd events kbd events process process the OS]

| | output output
| | | |
| | | | SIGINT, [signal handlers
| | | | SIGQUIT, in XEmacs]
V V V V SIGWINCH,

file file file file SIGALRM
desc. desc. desc. desc. |
(TTY) (TTY) (pipe) (pipe) |
| | | | fake timeouts
| | | | file |
| | | | desc. |
| | | | (pipe) |
| | | | | |
| | | | | |
| | | | | |
V V V V V V
------>-----------<----------------<----------------

|
|
| [collected using select() in emacs_tty_next_event()
| and converted to the appropriate Emacs event]
|
|
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V (above this line is TTY-specific)
Emacs ------------------------------------------------
event (below this line is the generic event mechanism)
|
|

was there if not, call
a SIGINT? emacs_tty_next_event()

| |
| |
| |
V V
--->-------<----

|
| [collected in event_stream_next_event();
| SIGINT is converted using maybe_read_quit_event()]
V

Emacs
event

|
\---->------>----- maybe_kbd_translate() ---->---\

|
|
|

command event queue |
if not from command

(contains events that were event queue, call
read earlier but not processed, event_stream_next_event()
typically when waiting in a |
sit-for, sleep-for, etc. for |
a particular event to be received) |

| |
| |
V V
---->------------------------------------<----

|
| [collected in
| next_event_internal()]
|

unread- unread- event from |
command- command- keyboard else, call
events event macro next_event_internal()

| | | |
| | | |
| | | |
V V V V
--------->----------------------<------------

|
| [collected in ‘next-event’, which may loop
| more than once if the event it gets is on
| a dead frame, device, etc.]
|
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|
V

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’

Notice the separation between TTY-specific and generic event mechanism. When using the
Xt-based event loop, the TTY-specific stuff is replaced but the rest stays the same.

It’s also important to realize that only one different kind of system-specific event loop can
be operating at a time, and must be able to receive all kinds of events simultaneously. For the
two existing event loops (implemented in ‘event-tty.c’ and ‘event-Xt.c’, respectively), the
TTY event loop only handles TTY consoles, while the Xt event loop handles both TTY and X
consoles. This situation is different from all of the output handlers, where you simply have one
per console type.

Here’s the Xt Event Loop Diagram (notice that below a certain point, it’s the same as the
above diagram):

asynch. asynch. asynch. asynch. [Collectors in
kbd kbd process process the OS]
events events output output

| | | |
| | | | asynch. asynch. [Collectors in the
| | | | X X OS and X Window System]
| | | | events events
| | | | | |
| | | | | |
| | | | | | SIGINT, [signal handlers
| | | | | | SIGQUIT, in XEmacs]
| | | | | | SIGWINCH,
| | | | | | SIGALRM
| | | | | | |
| | | | | | |
| | | | | | | timeouts
| | | | | | | |
| | | | | | | |
| | | | | | V |
V V V V V V fake |
file file file file file file file |
desc. desc. desc. desc. desc. desc. desc. |
(TTY) (TTY) (pipe) (pipe) (socket) (socket) (pipe) |
| | | | | | | |
| | | | | | | |
| | | | | | | |
V V V V V V V V
--->----------------------------------------<---------<------

| | |
| | | [collected using select() in
| | | _XtWaitForSomething(), called
| | | from XtAppProcessEvent(), called
| | | in emacs_Xt_next_event();
| | | dispatched to various callbacks]
| | |
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| | |
emacs_Xt_ p_s_callback(), | [popup_selection_callback]
event_handler() x_u_v_s_callback(),| [x_update_vertical_scrollbar_

| x_u_h_s_callback(),| callback]
| search_callback() | [x_update_horizontal_scrollbar_
| | | callback]
| | |
| | |

enqueue_Xt_ signal_special_ |
dispatch_event() Xt_user_event() |
[maybe multiple | |
times, maybe 0 | |
times] | |

| enqueue_Xt_ |
| dispatch_event() |
| | |
| | |
V V |
-->----------<-- |

| |
| |

dispatch Xt_what_callback()
event sets flags
queue |

| |
| |
| |
| |
---->-----------<--------

|
|
| [collected and converted as appropriate in
| emacs_Xt_next_event()]
|
|
V (above this line is Xt-specific)

Emacs ------------------------------------------------
event (below this line is the generic event mechanism)
|
|

was there if not, call
a SIGINT? emacs_Xt_next_event()

| |
| |
| |
V V
--->-------<----

|
| [collected in event_stream_next_event();
| SIGINT is converted using maybe_read_quit_event()]
V
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Emacs
event

|
\---->------>----- maybe_kbd_translate() -->-----\

|
|
|

command event queue |
if not from command

(contains events that were event queue, call
read earlier but not processed, event_stream_next_event()
typically when waiting in a |
sit-for, sleep-for, etc. for |
a particular event to be received) |

| |
| |
V V
---->----------------------------------<------

|
| [collected in
| next_event_internal()]
|

unread- unread- event from |
command- command- keyboard else, call
events event macro next_event_internal()

| | | |
| | | |
| | | |
V V V V
--------->----------------------<------------

|
| [collected in ‘next-event’, which may loop
| more than once if the event it gets is on
| a dead frame, device, etc.]
|
|
V

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’

11.4 Specifics About the Emacs Event

11.5 The Event Stream Callback Routines

11.6 Other Event Loop Functions
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detect_input_pending() and input-pending-p look for input by calling event_stream-
>event_pending_p and looking in [V]unread-command-event and the command_event_queue
(they do not check for an executing keyboard macro, though).

discard-input cancels any command events pending (and any keyboard macros currently
executing), and puts the others onto the command_event_queue. There is a comment about a
“race condition”, which is not a good sign.

next-command-event and read-char are higher-level interfaces to next-event. next-
command-event gets the next command event (i.e. keypress, mouse event, menu selection,
or scrollbar action), calling dispatch-event on any others. read-char calls next-command-
event and uses event_to_character() to return the character equivalent. With the right kind
of input method support, it is possible for (read-char) to return a Kanji character.

11.7 Converting Events

character_to_event(), event_to_character(), event-to-character, and character-
to-event convert between characters and keypress events corresponding to the characters. If
the event was not a keypress, event_to_character() returns -1 and event-to-character
returns nil. These functions convert between character representation and the split-up event
representation (keysym plus mod keys).

11.8 Dispatching Events; The Command Builder

Not yet documented.
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12 Evaluation; Stack Frames; Bindings

12.1 Evaluation

Feval() evaluates the form (a Lisp object) that is passed to it. Note that evaluation is only
non-trivial for two types of objects: symbols and conses. A symbol is evaluated simply by calling
symbol-value on it and returning the value.

Evaluating a cons means calling a function. First, eval checks to see if garbage-collection
is necessary, and calls Fgarbage_collect() if so. It then increases the evaluation depth by
1 (lisp_eval_depth, which is always less than max_lisp_eval_depth) and adds an element
to the linked list of struct backtrace’s (backtrace_list). Each such structure contains a
pointer to the function being called plus a list of the function’s arguments. Originally these
values are stored unevalled, and as they are evaluated, the backtrace structure is updated.
Garbage collection pays attention to the objects pointed to in the backtrace structures (garbage
collection might happen while a function is being called or while an argument is being evaluated,
and there could easily be no other references to the arguments in the argument list; once an
argument is evaluated, however, the unevalled version is not needed by eval, and so the backtrace
structure is changed).

At this point, the function to be called is determined by looking at the car of the cons (if this
is a symbol, its function definition is retrieved and the process repeated). The function should
then consist of either a Lisp_Subr (built-in function), a Lisp_Compiled_Function object, or a
cons whose car is the symbol autoload, macro or lambda.

If the function is a Lisp_Subr, the lisp object points to a struct Lisp_Subr (created by
DEFUN()), which contains a pointer to the C function, a minimum and maximum number of
arguments (possibly the special constants MANY or UNEVALLED), a pointer to the symbol referring
to that subr, and a couple of other things. If the subr wants its arguments UNEVALLED, they are
passed raw as a list. Otherwise, an array of evaluated arguments is created and put into the
backtrace structure, and either passed whole (MANY) or each argument is passed as a C argument.

If the function is a Lisp_Compiled_Function object or a lambda, apply_lambda() is called.
If the function is a macro, [..... fill in] is done. If the function is an autoload, do_autoload() is
called to load the definition and then eval starts over [explain this more].

When Feval exits, the evaluation depth is reduced by one, the debugger is called if appro-
priate, and the current backtrace structure is removed from the list.

apply_lambda() is passed a function, a list of arguments, and a flag indicating whether to
evaluate the arguments. It creates an array of (possibly) evaluated arguments and fixes up the
backtrace structure, just like eval does. Then it calls funcall_lambda().

funcall_lambda() goes through the formal arguments to the function and binds them to
the actual arguments, checking for &rest and &optional symbols in the formal arguments and
making sure the number of actual arguments is correct. Then either progn or byte-code is
called to actually execute the body and return a value.

Ffuncall() implements Lisp funcall. (funcall fun x1 x2 x3 ...) is equivalent to (eval
(list fun (quote x1) (quote x2) (quote x3) ...)). Ffuncall() contains its own code to do
the evaluation, however, and is almost identical to eval.

Fapply() implements Lisp apply, which is very similar to funcall except that if the last
argument is a list, the result is the same as if each of the arguments in the list had been passed
separately. Fapply() does some business to expand the last argument if it’s a list, then calls
Ffuncall() to do the work.
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apply1(), call0(), call1(), call2(), and call3() call a function, passing it the argu-
ment(s) given (the arguments are given as separate C arguments rather than being passed as
an array). apply1() uses apply while the others use funcall.

12.2 Dynamic Binding; The specbinding Stack; Unwind-
Protects

struct specbinding
{
Lisp_Object symbol, old_value;
Lisp_Object (*func) (Lisp_Object); /* for unwind-protect */

};

struct specbinding is used for local-variable bindings and unwind-protects. specpdl holds
an array of struct specbinding’s, specpdl_ptr points to the beginning of the free bindings
in the array, specpdl_size specifies the total number of binding slots in the array, and max_
specpdl_size specifies the maximum number of bindings the array can be expanded to hold.
grow_specpdl() increases the size of the specpdl array, multiplying its size by 2 but never
exceeding max_specpdl_size (except that if this number is less than 400, it is first set to 400).

specbind() binds a symbol to a value and is used for local variables and let forms. The
symbol and its old value (which might be Qunbound, indicating no prior value) are recorded in
the specpdl array, and specpdl_size is increased by 1.

record_unwind_protect() implements an unwind-protect, which, when placed around a
section of code, ensures that some specified cleanup routine will be executed even if the code
exits abnormally (e.g. through a throw or quit). record_unwind_protect() simply adds a new
specbinding to the specpdl array and stores the appropriate information in it. The cleanup
routine can either be a C function, which is stored in the func field, or a progn form, which is
stored in the old_value field.

unbind_to() removes specbindings from the specpdl array until the specified position is
reached. Each specbinding can be one of three types:

1. an unwind-protect with a C cleanup function (func is not 0, and old_value holds an
argument to be passed to the function);

2. an unwind-protect with a Lisp form (func is 0, symbol is nil, and old_value holds the
form to be executed with Fprogn()); or

3. a local-variable binding (func is 0, symbol is not nil, and old_value holds the old value,
which is stored as the symbol’s value).

12.3 Simple Special Forms

or, and, if, cond, progn, prog1, prog2, setq, quote, function, let*, let, while

All of these are very simple and work as expected, calling Feval() or Fprogn() as necessary
and (in the case of let and let*) using specbind() to create bindings and unbind_to() to
undo the bindings when finished. Note that these functions do a lot of GCPROing to protect
their arguments from garbage collection because they call Feval() (see Section 10.2 [Garbage
Collection], page 54).



Chapter 12: Evaluation; Stack Frames; Bindings 73

12.4 Catch and Throw

struct catchtag
{
Lisp_Object tag;
Lisp_Object val;
struct catchtag *next;
struct gcpro *gcpro;
jmp_buf jmp;
struct backtrace *backlist;
int lisp_eval_depth;
int pdlcount;

};

catch is a Lisp function that places a catch around a body of code. A catch is a means of
non-local exit from the code. When a catch is created, a tag is specified, and executing a throw
to this tag will exit from the body of code caught with this tag, and its value will be the value
given in the call to throw. If there is no such call, the code will be executed normally.

Information pertaining to a catch is held in a struct catchtag, which is placed at the head
of a linked list pointed to by catchlist. internal_catch() is passed a C function to call
(Fprogn() when Lisp catch is called) and arguments to give it, and places a catch around the
function. Each struct catchtag is held in the stack frame of the internal_catch() instance
that created the catch.

internal_catch() is fairly straightforward. It stores into the struct catchtag the tag
name and the current values of backtrace_list, lisp_eval_depth, gcprolist, and the offset
into the specpdl array, sets a jump point with _setjmp() (storing the jump point into the
struct catchtag), and calls the function. Control will return to internal_catch() either
when the function exits normally or through a _longjmp() to this jump point. In the latter
case, throw will store the value to be returned into the struct catchtag before jumping. When
it’s done, internal_catch() removes the struct catchtag from the catchlist and returns the
proper value.

Fthrow() goes up through the catchlist until it finds one with a matching tag. It then calls
unbind_catch() to restore everything to what it was when the appropriate catch was set, stores
the return value in the struct catchtag, and jumps (with _longjmp()) to its jump point.

unbind_catch() removes all catches from the catchlist until it finds the correct one. Some
of the catches might have been placed for error-trapping, and if so, the appropriate entries on
the handlerlist must be removed (see “errors”). unbind_catch() also restores the values of
gcprolist, backtrace_list, and lisp_eval, and calls unbind_to() to undo any specbindings
created since the catch.
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13 Symbols and Variables

13.1 Introduction to Symbols

A symbol is basically just an object with four fields: a name (a string), a value (some
Lisp object), a function (some Lisp object), and a property list (usually a list of alternating
keyword/value pairs). What makes symbols special is that there is usually only one symbol
with a given name, and the symbol is referred to by name. This makes a symbol a convenient
way of calling up data by name, i.e. of implementing variables. (The variable’s value is stored in
the value slot.) Similarly, functions are referenced by name, and the definition of the function is
stored in a symbol’s function slot. This means that there can be a distinct function and variable
with the same name. The property list is used as a more general mechanism of associating
additional values with particular names, and once again the namespace is independent of the
function and variable namespaces.

13.2 Obarrays

The identity of symbols with their names is accomplished through a structure called an
obarray, which is just a poorly-implemented hash table mapping from strings to symbols whose
name is that string. (I say “poorly implemented” because an obarray appears in Lisp as a vector
with some hidden fields rather than as its own opaque type. This is an Emacs Lisp artifact that
should be fixed.)

Obarrays are implemented as a vector of some fixed size (which should be a prime for best
results), where each “bucket” of the vector contains one or more symbols, threaded through a
hidden next field in the symbol. Lookup of a symbol in an obarray, and adding a symbol to an
obarray, is accomplished through standard hash-table techniques.

The standard Lisp function for working with symbols and obarrays is intern. This looks up
a symbol in an obarray given its name; if it’s not found, a new symbol is automatically created
with the specified name, added to the obarray, and returned. This is what happens when the
Lisp reader encounters a symbol (or more precisely, encounters the name of a symbol) in some
text that it is reading. There is a standard obarray called obarray that is used for this purpose,
although the Lisp programmer is free to create his own obarrays and intern symbols in them.

Note that, once a symbol is in an obarray, it stays there until something is done about it,
and the standard obarray obarray always stays around, so once you use any particular variable
name, a corresponding symbol will stay around in obarray until you exit XEmacs.

Note that obarray itself is a variable, and as such there is a symbol in obarray whose name
is "obarray" and which contains obarray as its value.

Note also that this call to intern occurs only when in the Lisp reader, not when the code is
executed (at which point the symbol is already around, stored as such in the definition of the
function).

You can create your own obarray using make-vector (this is horrible but is an artifact) and
intern symbols into that obarray. Doing that will result in two or more symbols with the same
name. However, at most one of these symbols is in the standard obarray: You cannot have two
symbols of the same name in any particular obarray. Note that you cannot add a symbol to an
obarray in any fashion other than using intern: i.e. you can’t take an existing symbol and put
it in an existing obarray. Nor can you change the name of an existing symbol. (Since obarrays



76 XEmacs Internals Manual

are vectors, you can violate the consistency of things by storing directly into the vector, but
let’s ignore that possibility.)

Usually symbols are created by intern, but if you really want, you can explicitly create a
symbol using make-symbol, giving it some name. The resulting symbol is not in any obarray
(i.e. it is uninterned), and you can’t add it to any obarray. Therefore its primary purpose is
as a symbol to use in macros to avoid namespace pollution. It can also be used as a carrier of
information, but cons cells could probably be used just as well.

You can also use intern-soft to look up a symbol but not create a new one, and unintern
to remove a symbol from an obarray. This returns the removed symbol. (Remember: You can’t
put the symbol back into any obarray.) Finally, mapatoms maps over all of the symbols in an
obarray.

13.3 Symbol Values

The value field of a symbol normally contains a Lisp object. However, a symbol can be
unbound, meaning that it logically has no value. This is internally indicated by storing a
special Lisp object, called the unbound marker and stored in the global variable Qunbound. The
unbound marker is of a special Lisp object type called symbol-value-magic. It is impossible for
the Lisp programmer to directly create or access any object of this type.

You must not let any “symbol-value-magic” object escape to the Lisp level. Printing any
of these objects will cause the message ‘INTERNAL EMACS BUG’ to appear as part of the print
representation. (You may see this normally when you call debug_print() from the debugger on
a Lisp object.) If you let one of these objects escape to the Lisp level, you will violate a number
of assumptions contained in the C code and make the unbound marker not function right.

When a symbol is created, its value field (and function field) are set to Qunbound. The Lisp
programmer can restore these conditions later using makunbound or fmakunbound, and can query
to see whether the value of function fields are bound (i.e. have a value other than Qunbound)
using boundp and fboundp. The fields are set to a normal Lisp object using set (or setq) and
fset.

Other symbol-value-magic objects are used as special markers to indicate variables that
have non-normal properties. This includes any variables that are tied into C variables (setting
the variable magically sets some global variable in the C code, and likewise for retrieving the
variable’s value), variables that magically tie into slots in the current buffer, variables that are
buffer-local, etc. The symbol-value-magic object is stored in the value cell in place of a normal
object, and the code to retrieve a symbol’s value (i.e. symbol-value) knows how to do special
things with them. This means that you should not just fetch the value cell directly if you want
a symbol’s value.

The exact workings of this are rather complex and involved and are well-documented in
comments in ‘buffer.c’, ‘symbols.c’, and ‘lisp.h’.
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14 Buffers and Textual Representation

14.1 Introduction to Buffers

A buffer is logically just a Lisp object that holds some text. In this, it is like a string, but a
buffer is optimized for frequent insertion and deletion, while a string is not. Furthermore:
1. Buffers are permanent objects, i.e. once you create them, they remain around, and need to

be explicitly deleted before they go away.
2. Each buffer has a unique name, which is a string. Buffers are normally referred to by name.

In this respect, they are like symbols.
3. Buffers have a default insertion position, called point. Inserting text (unless you explicitly

give a position) goes at point, and moves point forward past the text. This is what is going
on when you type text into Emacs.

4. Buffers have lots of extra properties associated with them.
5. Buffers can be displayed. What this means is that there exist a number of windows, which

are objects that correspond to some visible section of your display, and each window has
an associated buffer, and the current contents of the buffer are shown in that section of the
display. The redisplay mechanism (which takes care of doing this) knows how to look at
the text of a buffer and come up with some reasonable way of displaying this. Many of the
properties of a buffer control how the buffer’s text is displayed.

6. One buffer is distinguished and called the current buffer. It is stored in the variable
current_buffer. Buffer operations operate on this buffer by default. When you are typing
text into a buffer, the buffer you are typing into is always current_buffer. Switching to a
different window changes the current buffer. Note that Lisp code can temporarily change
the current buffer using set-buffer (often enclosed in a save-excursion so that the for-
mer current buffer gets restored when the code is finished). However, calling set-buffer
will NOT cause a permanent change in the current buffer. The reason for this is that the
top-level event loop sets current_buffer to the buffer of the selected window, each time it
finishes executing a user command.

Make sure you understand the distinction between current buffer and buffer of the selected
window, and the distinction between point of the current buffer and window-point of the selected
window. (This latter distinction is explained in detail in the section on windows.)

14.2 The Text in a Buffer

The text in a buffer consists of a sequence of zero or more characters. A character is an
integer that logically represents a letter, number, space, or other unit of text. Most of the
characters that you will typically encounter belong to the ASCII set of characters, but there
are also characters for various sorts of accented letters, special symbols, Chinese and Japanese
ideograms (i.e. Kanji, Katakana, etc.), Cyrillic and Greek letters, etc. The actual number of
possible characters is quite large.

For now, we can view a character as some non-negative integer that has some shape that
defines how it typically appears (e.g. as an uppercase A). (The exact way in which a character
appears depends on the font used to display the character.) The internal type of characters in
the C code is an Emchar; this is just an int, but using a symbolic type makes the code clearer.

Between every character in a buffer is a buffer position or character position. We can speak
of the character before or after a particular buffer position, and when you insert a character
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at a particular position, all characters after that position end up at new positions. When we
speak of the character at a position, we really mean the character after the position. (This
schizophrenia between a buffer position being “between” a character and “on” a character is
rampant in Emacs.)

Buffer positions are numbered starting at 1. This means that position 1 is before the first
character, and position 0 is not valid. If there are N characters in a buffer, then buffer position
N+1 is after the last one, and position N+2 is not valid.

The internal makeup of the Emchar integer varies depending on whether we have compiled
with MULE support. If not, the Emchar integer is an 8-bit integer with possible values from 0 -
255. 0 - 127 are the standard ASCII characters, while 128 - 255 are the characters from the ISO-
8859-1 character set. If we have compiled with MULE support, an Emchar is a 19-bit integer,
with the various bits having meanings according to a complex scheme that will be detailed
later. The characters numbered 0 - 255 still have the same meanings as for the non-MULE case,
though.

Internally, the text in a buffer is represented in a fairly simple fashion: as a contiguous array
of bytes, with a gap of some size in the middle. Although the gap is of some substantial size in
bytes, there is no text contained within it: From the perspective of the text in the buffer, it does
not exist. The gap logically sits at some buffer position, between two characters (or possibly at
the beginning or end of the buffer). Insertion of text in a buffer at a particular position is always
accomplished by first moving the gap to that position (i.e. through some block moving of text),
then writing the text into the beginning of the gap, thereby shrinking the gap. If the gap shrinks
down to nothing, a new gap is created. (What actually happens is that a new gap is “created”
at the end of the buffer’s text, which requires nothing more than changing a couple of indices;
then the gap is “moved” to the position where the insertion needs to take place by moving up
in memory all the text after that position.) Similarly, deletion occurs by moving the gap to the
place where the text is to be deleted, and then simply expanding the gap to include the deleted
text. (Expanding and shrinking the gap as just described means just that the internal indices
that keep track of where the gap is located are changed.)

Note that the total amount of memory allocated for a buffer text never decreases while the
buffer is live. Therefore, if you load up a 20-megabyte file and then delete all but one character,
there will be a 20-megabyte gap, which won’t get any smaller (except by inserting characters
back again). Once the buffer is killed, the memory allocated for the buffer text will be freed,
but it will still be sitting on the heap, taking up virtual memory, and will not be released back
to the operating system. (However, if you have compiled XEmacs with rel-alloc, the situation
is different. In this case, the space will be released back to the operating system. However, this
tends to result in a noticeable speed penalty.)

Astute readers may notice that the text in a buffer is represented as an array of bytes, while
(at least in the MULE case) an Emchar is a 19-bit integer, which clearly cannot fit in a byte.
This means (of course) that the text in a buffer uses a different representation from an Emchar:
specifically, the 19-bit Emchar becomes a series of one to four bytes. The conversion between
these two representations is complex and will be described later.

In the non-MULE case, everything is very simple: An Emchar is an 8-bit value, which fits
neatly into one byte.

If we are given a buffer position and want to retrieve the character at that position, we need
to follow these steps:
1. Pretend there’s no gap, and convert the buffer position into a byte index that indexes to the

appropriate byte in the buffer’s stream of textual bytes. By convention, byte indices begin
at 1, just like buffer positions. In the non-MULE case, byte indices and buffer positions are
identical, since one character equals one byte.

2. Convert the byte index into a memory index, which takes the gap into account. The
memory index is a direct index into the block of memory that stores the text of a buffer.
This basically just involves checking to see if the byte index is past the gap, and if so,



Chapter 14: Buffers and Textual Representation 79

adding the size of the gap to it. By convention, memory indices begin at 1, just like buffer
positions and byte indices, and when referring to the position that is at the gap, we always
use the memory position at the beginning, not at the end, of the gap.

3. Fetch the appropriate bytes at the determined memory position.
4. Convert these bytes into an Emchar.

In the non-Mule case, (3) and (4) boil down to a simple one-byte memory access.
Note that we have defined three types of positions in a buffer:

1. buffer positions or character positions, typedef Bufpos
2. byte indices, typedef Bytind
3. memory indices, typedef Memind

All three typedefs are just ints, but defining them this way makes things a lot clearer.
Most code works with buffer positions. In particular, all Lisp code that refers to text in a

buffer uses buffer positions. Lisp code does not know that byte indices or memory indices exist.
Finally, we have a typedef for the bytes in a buffer. This is a Bufbyte, which is an unsigned

char. Referring to them as Bufbytes underscores the fact that we are working with a string of
bytes in the internal Emacs buffer representation rather than in one of a number of possible
alternative representations (e.g. EUC-encoded text, etc.).

14.3 Buffer Lists

Recall earlier that buffers are permanent objects, i.e. that they remain around until explicitly
deleted. This entails that there is a list of all the buffers in existence. This list is actually an
assoc-list (mapping from the buffer’s name to the buffer) and is stored in the global variable
Vbuffer_alist.

The order of the buffers in the list is important: the buffers are ordered approximately
from most-recently-used to least-recently-used. Switching to a buffer using switch-to-buffer,
pop-to-buffer, etc. and switching windows using other-window, etc. usually brings the new
current buffer to the front of the list. switch-to-buffer, other-buffer, etc. look at the
beginning of the list to find an alternative buffer to suggest. You can also explicitly move a
buffer to the end of the list using bury-buffer.

In addition to the global ordering in Vbuffer_alist, each frame has its own ordering of the
list. These lists always contain the same elements as in Vbuffer_alist although possibly in a
different order. buffer-list normally returns the list for the selected frame. This allows you
to work in separate frames without things interfering with each other.

The standard way to look up a buffer given a name is get-buffer, and the standard way to
create a new buffer is get-buffer-create, which looks up a buffer with a given name, creating a
new one if necessary. These operations correspond exactly with the symbol operations intern-
soft and intern, respectively. You can also force a new buffer to be created using generate-
new-buffer, which takes a name and (if necessary) makes a unique name from this by appending
a number, and then creates the buffer. This is basically like the symbol operation gensym.

14.4 Markers and Extents

Among the things associated with a buffer are things that are logically attached to certain
buffer positions. This can be used to keep track of a buffer position when text is inserted and
deleted, so that it remains at the same spot relative to the text around it; to assign properties
to particular sections of text; etc. There are two such objects that are useful in this regard:
they are markers and extents.
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A marker is simply a flag placed at a particular buffer position, which is moved around as
text is inserted and deleted. Markers are used for all sorts of purposes, such as the mark that is
the other end of textual regions to be cut, copied, etc.

An extent is similar to two markers plus some associated properties, and is used to keep
track of regions in a buffer as text is inserted and deleted, and to add properties (e.g. fonts) to
particular regions of text. The external interface of extents is explained elsewhere.

The important thing here is that markers and extents simply contain buffer positions in them
as integers, and every time text is inserted or deleted, these positions must be updated. In order
to minimize the amount of shuffling that needs to be done, the positions in markers and extents
(there’s one per marker, two per extent) and stored in Meminds. This means that they only
need to be moved when the text is physically moved in memory; since the gap structure tries
to minimize this, it also minimizes the number of marker and extent indices that need to be
adjusted. Look in ‘insdel.c’ for the details of how this works.

One other important distinction is that markers are temporary while extents are permanent.
This means that markers disappear as soon as there are no more pointers to them, and corre-
spondingly, there is no way to determine what markers are in a buffer if you are just given the
buffer. Extents remain in a buffer until they are detached (which could happen as a result of
text being deleted) or the buffer is deleted, and primitives do exist to enumerate the extents in
a buffer.

14.5 Bufbytes and Emchars

Not yet documented.

14.6 The Buffer Object

Buffers contain fields not directly accessible by the Lisp programmer. We describe them here,
naming them by the names used in the C code. Many are accessible indirectly in Lisp programs
via Lisp primitives.

name The buffer name is a string that names the buffer. It is guaranteed to be unique.
See section “Buffer Names” in XEmacs Lisp Programmer’s Manual.

save_modified
This field contains the time when the buffer was last saved, as an integer. See section
“Buffer Modification” in XEmacs Lisp Programmer’s Manual.

modtime This field contains the modification time of the visited file. It is set when the file is
written or read. Every time the buffer is written to the file, this field is compared
to the modification time of the file. See section “Buffer Modification” in XEmacs
Lisp Programmer’s Manual.

auto_save_modified
This field contains the time when the buffer was last auto-saved.

last_window_start
This field contains the window-start position in the buffer as of the last time the
buffer was displayed in a window.

undo_list
This field points to the buffer’s undo list. See section “Undo” in XEmacs Lisp
Programmer’s Manual.
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syntax_table_v
This field contains the syntax table for the buffer. See section “Syntax Tables” in
XEmacs Lisp Programmer’s Manual.

downcase_table
This field contains the conversion table for converting text to lower case. See section
“Case Tables” in XEmacs Lisp Programmer’s Manual.

upcase_table
This field contains the conversion table for converting text to upper case. See section
“Case Tables” in XEmacs Lisp Programmer’s Manual.

case_canon_table
This field contains the conversion table for canonicalizing text for case-folding search.
See section “Case Tables” in XEmacs Lisp Programmer’s Manual.

case_eqv_table
This field contains the equivalence table for case-folding search. See section “Case
Tables” in XEmacs Lisp Programmer’s Manual.

display_table
This field contains the buffer’s display table, or nil if it doesn’t have one. See
section “Display Tables” in XEmacs Lisp Programmer’s Manual.

markers This field contains the chain of all markers that currently point into the buffer.
Deletion of text in the buffer, and motion of the buffer’s gap, must check each
of these markers and perhaps update it. See section “Markers” in XEmacs Lisp
Programmer’s Manual.

backed_up
This field is a flag that tells whether a backup file has been made for the visited file
of this buffer.

mark This field contains the mark for the buffer. The mark is a marker, hence it is also
included on the list markers. See section “The Mark” in XEmacs Lisp Programmer’s
Manual.

mark_active
This field is non-nil if the buffer’s mark is active.

local_var_alist
This field contains the association list describing the variables local in this buffer,
and their values, with the exception of local variables that have special slots in the
buffer object. (Those slots are omitted from this table.) See section “Buffer-Local
Variables” in XEmacs Lisp Programmer’s Manual.

modeline_format
This field contains a Lisp object which controls how to display the mode line for
this buffer. See section “Modeline Format” in XEmacs Lisp Programmer’s Manual.

base_buffer
This field holds the buffer’s base buffer (if it is an indirect buffer), or nil.
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15 MULE Character Sets and Encodings

Recall that there are two primary ways that text is represented in XEmacs. The buffer
representation sees the text as a series of bytes (Bufbytes), with a variable number of bytes
used per character. The character representation sees the text as a series of integers (Emchars),
one per character. The character representation is a cleaner representation from a theoretical
standpoint, and is thus used in many cases when lots of manipulations on a string need to
be done. However, the buffer representation is the standard representation used in both Lisp
strings and buffers, and because of this, it is the “default” representation that text comes in.
The reason for using this representation is that it’s compact and is compatible with ASCII.

15.1 Character Sets

A character set (or charset) is an ordered set of characters. A particular character in a charset
is indexed using one or more position codes, which are non-negative integers. The number of
position codes needed to identify a particular character in a charset is called the dimension of
the charset. In XEmacs/Mule, all charsets have dimension 1 or 2, and the size of all charsets
(except for a few special cases) is either 94, 96, 94 by 94, or 96 by 96. The range of position
codes used to index characters from any of these types of character sets is as follows:

Charset type Position code 1 Position code 2
------------------------------------------------------------
94 33 - 126 N/A
96 32 - 127 N/A
94x94 33 - 126 33 - 126
96x96 32 - 127 32 - 127

Note that in the above cases position codes do not start at an expected value such as 0 or 1.
The reason for this will become clear later.

For example, Latin-1 is a 96-character charset, and JISX0208 (the Japanese national character
set) is a 94x94-character charset.

[Note that, although the ranges above define the valid position codes for a charset, some
of the slots in a particular charset may in fact be empty. This is the case for JISX0208, for
example, where (e.g.) all the slots whose first position code is in the range 118 - 127 are empty.]

There are three charsets that do not follow the above rules. All of them have one dimension,
and have ranges of position codes as follows:

Charset name Position code 1
------------------------------------
ASCII 0 - 127
Control-1 0 - 31
Composite 0 - some large number

(The upper bound of the position code for composite characters has not yet been determined,
but it will probably be at least 16,383).

ASCII is the union of two subsidiary character sets: Printing-ASCII (the printing ASCII
character set, consisting of position codes 33 - 126, like for a standard 94-character charset) and
Control-ASCII (the non-printing characters that would appear in a binary file with codes 0 - 32
and 127).

Control-1 contains the non-printing characters that would appear in a binary file with codes
128 - 159.
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Composite contains characters that are generated by overstriking one or more characters
from other charsets.

Note that some characters in ASCII, and all characters in Control-1, are control (non-
printing) characters. These have no printed representation but instead control some other func-
tion of the printing (e.g. TAB or 8 moves the current character position to the next tab stop).
All other characters in all charsets are graphic (printing) characters.

When a binary file is read in, the bytes in the file are assigned to character sets as follows:
Bytes Character set Range
--------------------------------------------------
0 - 127 ASCII 0 - 127
128 - 159 Control-1 0 - 31
160 - 255 Latin-1 32 - 127

This is a bit ad-hoc but gets the job done.

15.2 Encodings

An encoding is a way of numerically representing characters from one or more character sets.
If an encoding only encompasses one character set, then the position codes for the characters
in that character set could be used directly. This is not possible, however, if more than one
character set is to be used in the encoding.

For example, the conversion detailed above between bytes in a binary file and characters is
effectively an encoding that encompasses the three character sets ASCII, Control-1, and Latin-1
in a stream of 8-bit bytes.

Thus, an encoding can be viewed as a way of encoding characters from a specified group of
character sets using a stream of bytes, each of which contains a fixed number of bits (but not
necessarily 8, as in the common usage of “byte”).

Here are descriptions of a couple of common encodings:

15.2.1 Japanese EUC (Extended Unix Code)

This encompasses the character sets Printing-ASCII, Japanese-JISSX0201, and Japanese-
JISX0208-Kana (half-width katakana, the right half of JISX0201). It uses 8-bit bytes.

Note that Printing-ASCII and Japanese-JISX0201-Kana are 94-character charsets, while
Japanese-JISX0208 is a 94x94-character charset.

The encoding is as follows:
Character set Representation (PC=position-code)
------------- --------------
Printing-ASCII PC1
Japanese-JISX0201-Kana 0x8E | PC1 + 0x80
Japanese-JISX0208 PC1 + 0x80 | PC2 + 0x80
Japanese-JISX0212 PC1 + 0x80 | PC2 + 0x80

15.2.2 JIS7

This encompasses the character sets Printing-ASCII, Japanese-JISX0201-Roman (the left
half of JISX0201; this character set is very similar to Printing-ASCII and is a 94-character
charset), Japanese-JISX0208, and Japanese-JISX0201-Kana. It uses 7-bit bytes.
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Unlike Japanese EUC, this is a modal encoding, which means that there are multiple states
that the encoding can be in, which affect how the bytes are to be interpreted. Special sequences
of bytes (called escape sequences) are used to change states.

The encoding is as follows:

Character set Representation (PC=position-code)
------------- --------------
Printing-ASCII PC1
Japanese-JISX0201-Roman PC1
Japanese-JISX0201-Kana PC1
Japanese-JISX0208 PC1 PC2

Escape sequence ASCII equivalent Meaning
--------------- ---------------- -------
0x1B 0x28 0x4A ESC ( J invoke Japanese-JISX0201-Roman
0x1B 0x28 0x49 ESC ( I invoke Japanese-JISX0201-Kana
0x1B 0x24 0x42 ESC $ B invoke Japanese-JISX0208
0x1B 0x28 0x42 ESC ( B invoke Printing-ASCII

Initially, Printing-ASCII is invoked.

15.3 Internal Mule Encodings

In XEmacs/Mule, each character set is assigned a unique number, called a leading byte. This
is used in the encodings of a character. Leading bytes are in the range 0x80 - 0xFF (except for
ASCII, which has a leading byte of 0), although some leading bytes are reserved.

Charsets whose leading byte is in the range 0x80 - 0x9F are called official and are used for
built-in charsets. Other charsets are called private and have leading bytes in the range 0xA0 -
0xFF; these are user-defined charsets.

More specifically:

Character set Leading byte
------------- ------------
ASCII 0
Composite 0x80
Dimension-1 Official 0x81 - 0x8D

(0x8E is free)
Control-1 0x8F
Dimension-2 Official 0x90 - 0x99

(0x9A - 0x9D are free;
0x9E and 0x9F are reserved)

Dimension-1 Private 0xA0 - 0xEF
Dimension-2 Private 0xF0 - 0xFF

There are two internal encodings for characters in XEmacs/Mule. One is called string en-
coding and is an 8-bit encoding that is used for representing characters in a buffer or string. It
uses 1 to 4 bytes per character. The other is called character encoding and is a 19-bit encoding
that is used for representing characters individually in a variable.

(In the following descriptions, we’ll ignore composite characters for the moment. We also
give a general (structural) overview first, followed later by the exact details.)
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15.3.1 Internal String Encoding

ASCII characters are encoded using their position code directly. Other characters are encoded
using their leading byte followed by their position code(s) with the high bit set. Characters in
private character sets have their leading byte prefixed with a leading byte prefix, which is either
0x9E or 0x9F. (No character sets are ever assigned these leading bytes.) Specifically:

Character set Encoding (PC=position-code, LB=leading-byte)
------------- --------
ASCII PC-1 |
Control-1 LB | PC1 + 0xA0 |
Dimension-1 official LB | PC1 + 0x80 |
Dimension-1 private 0x9E | LB | PC1 + 0x80 |
Dimension-2 official LB | PC1 + 0x80 | PC2 + 0x80 |
Dimension-2 private 0x9F | LB | PC1 + 0x80 | PC2 + 0x80

The basic characteristic of this encoding is that the first byte of all characters is in the range
0x00 - 0x9F, and the second and following bytes of all characters is in the range 0xA0 - 0xFF.
This means that it is impossible to get out of sync, or more specifically:
1. Given any byte position, the beginning of the character it is within can be determined in

constant time.
2. Given any byte position at the beginning of a character, the beginning of the next character

can be determined in constant time.
3. Given any byte position at the beginning of a character, the beginning of the previous

character can be determined in constant time.
4. Textual searches can simply treat encoded strings as if they were encoded in a one-byte-

per-character fashion rather than the actual multi-byte encoding.

None of the standard non-modal encodings meet all of these conditions. For example, EUC
satisfies only (2) and (3), while Shift-JIS and Big5 (not yet described) satisfy only (2). (All
non-modal encodings must satisfy (2), in order to be unambiguous.)

15.3.2 Internal Character Encoding

One 19-bit word represents a single character. The word is separated into three fields:
Bit number: 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

<------------> <------------------> <------------------>
Field: 1 2 3

Note that fields 2 and 3 hold 7 bits each, while field 1 holds 5 bits.
Character set Field 1 Field 2 Field 3
------------- ------- ------- -------
ASCII 0 0 PC1

range: (00 - 7F)
Control-1 0 1 PC1

range: (00 - 1F)
Dimension-1 official 0 LB - 0x80 PC1

range: (01 - 0D) (20 - 7F)
Dimension-1 private 0 LB - 0x80 PC1

range: (20 - 6F) (20 - 7F)
Dimension-2 official LB - 0x8F PC1 PC2

range: (01 - 0A) (20 - 7F) (20 - 7F)
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Dimension-2 private LB - 0xE1 PC1 PC2
range: (0F - 1E) (20 - 7F) (20 - 7F)

Composite 0x1F ? ?

Note that character codes 0 - 255 are the same as the “binary encoding” described above.

15.4 CCL

CCL PROGRAM SYNTAX:
CCL_PROGRAM := (CCL_MAIN_BLOCK

[ CCL_EOF_BLOCK ])

CCL_MAIN_BLOCK := CCL_BLOCK
CCL_EOF_BLOCK := CCL_BLOCK

CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
STATEMENT :=

SET | IF | BRANCH | LOOP | REPEAT | BREAK
| READ | WRITE

SET := (REG = EXPRESSION) | (REG SELF_OP EXPRESSION)
| INT-OR-CHAR

EXPRESSION := ARG | (EXPRESSION OP ARG)

IF := (if EXPRESSION CCL_BLOCK CCL_BLOCK)
BRANCH := (branch EXPRESSION CCL_BLOCK [CCL_BLOCK ...])
LOOP := (loop STATEMENT [STATEMENT ...])
BREAK := (break)
REPEAT := (repeat)

| (write-repeat [REG | INT-OR-CHAR | string])
| (write-read-repeat REG [INT-OR-CHAR | string | ARRAY]?)

READ := (read REG) | (read REG REG)
| (read-if REG ARITH_OP ARG CCL_BLOCK CCL_BLOCK)
| (read-branch REG CCL_BLOCK [CCL_BLOCK ...])

WRITE := (write REG) | (write REG REG)
| (write INT-OR-CHAR) | (write STRING) | STRING
| (write REG ARRAY)

END := (end)

REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
ARG := REG | INT-OR-CHAR
OP := + | - | * | / | % | & | ’|’ | ^ | << | >> | <8 | >8 | //

| < | > | == | <= | >= | !=
SELF_OP :=

+= | -= | *= | /= | %= | &= | ’|=’ | ^= | <<= | >>=
ARRAY := ’[’ INT-OR-CHAR ... ’]’
INT-OR-CHAR := INT | CHAR

MACHINE CODE:
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The machine code consists of a vector of 32-bit words.
The first such word specifies the start of the EOF section of the code;
this is the code executed to handle any stuff that needs to be done
(e.g. designating back to ASCII and left-to-right mode) after all
other encoded/decoded data has been written out. This is not used for
charset CCL programs.

REGISTER: 0..7 -- refered by RRR or rrr

OPERATOR BIT FIELD (27-bit): XXXXXXXXXXXXXXX RRR TTTTT
TTTTT (5-bit): operator type
RRR (3-bit): register number
XXXXXXXXXXXXXXXX (15-bit):

CCCCCCCCCCCCCCC: constant or address
000000000000rrr: register number

AAAA: 00000 +
00001 -
00010 *
00011 /
00100 %
00101 &
00110 |
00111 ~

01000 <<
01001 >>
01010 <8
01011 >8
01100 //
01101 not used
01110 not used
01111 not used

10000 <
10001 >
10010 ==
10011 <=
10100 >=
10101 !=

OPERATORS: TTTTT RRR XX..

SetCS: 00000 RRR C...C RRR = C...C
SetCL: 00001 RRR ..... RRR = c...c

c.............c
SetR: 00010 RRR ..rrr RRR = rrr
SetA: 00011 RRR ..rrr RRR = array[rrr]

C.............C size of array = C...C
c.............c contents = c...c
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Jump: 00100 000 c...c jump to c...c
JumpCond: 00101 RRR c...c if (!RRR) jump to c...c
WriteJump: 00110 RRR c...c Write1 RRR, jump to c...c
WriteReadJump: 00111 RRR c...c Write1, Read1 RRR, jump to c...c
WriteCJump: 01000 000 c...c Write1 C...C, jump to c...c

C...C
WriteCReadJump: 01001 RRR c...c Write1 C...C, Read1 RRR,

C.............C and jump to c...c
WriteSJump: 01010 000 c...c WriteS, jump to c...c

C.............C
S.............S
...

WriteSReadJump: 01011 RRR c...c WriteS, Read1 RRR, jump to c...c
C.............C
S.............S
...

WriteAReadJump: 01100 RRR c...c WriteA, Read1 RRR, jump to c...c
C.............C size of array = C...C
c.............c contents = c...c
...

Branch: 01101 RRR C...C if (RRR >= 0 && RRR < C..)
c.............c branch to (RRR+1)th address

Read1: 01110 RRR ... read 1-byte to RRR
Read2: 01111 RRR ..rrr read 2-byte to RRR and rrr
ReadBranch: 10000 RRR C...C Read1 and Branch

c.............c
...

Write1: 10001 RRR ..... write 1-byte RRR
Write2: 10010 RRR ..rrr write 2-byte RRR and rrr
WriteC: 10011 000 ..... write 1-char C...CC

C.............C
WriteS: 10100 000 ..... write C..-byte of string

C.............C
S.............S
...

WriteA: 10101 RRR ..... write array[RRR]
C.............C size of array = C...C
c.............c contents = c...c
...

End: 10110 000 ..... terminate the execution

SetSelfCS: 10111 RRR C...C RRR AAAAA= C...C
..........AAAAA

SetSelfCL: 11000 RRR ..... RRR AAAAA= c...c
c.............c
..........AAAAA

SetSelfR: 11001 RRR ..Rrr RRR AAAAA= rrr
..........AAAAA

SetExprCL: 11010 RRR ..Rrr RRR = rrr AAAAA c...c
c.............c
..........AAAAA
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SetExprR: 11011 RRR ..rrr RRR = rrr AAAAA Rrr
............Rrr
..........AAAAA

JumpCondC: 11100 RRR c...c if !(RRR AAAAA C..) jump to c...c
C.............C
..........AAAAA

JumpCondR: 11101 RRR c...c if !(RRR AAAAA rrr) jump to c...c
............rrr
..........AAAAA

ReadJumpCondC: 11110 RRR c...c Read1 and JumpCondC
C.............C
..........AAAAA

ReadJumpCondR: 11111 RRR c...c Read1 and JumpCondR
............rrr
..........AAAAA
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16 The Lisp Reader and Compiler

Not yet documented.
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17 Lstreams

An lstream is an internal Lisp object that provides a generic buffering stream implementation.
Conceptually, you send data to the stream or read data from the stream, not caring what’s on
the other end of the stream. The other end could be another stream, a file descriptor, a stdio
stream, a fixed block of memory, a reallocating block of memory, etc. The main purpose of the
stream is to provide a standard interface and to do buffering. Macros are defined to read or
write characters, so the calling functions do not have to worry about blocking data together in
order to achieve efficiency.

17.1 Creating an Lstream

Lstreams come in different types, depending on what is being interfaced to. Although the
primitive for creating new lstreams is Lstream_new(), generally you do not call this directly.
Instead, you call some type-specific creation function, which creates the lstream and initializes
it as appropriate for the particular type.

All lstream creation functions take a mode argument, specifying what mode the lstream
should be opened as. This controls whether the lstream is for input and output, and optionally
whether data should be blocked up in units of MULE characters. Note that some types of
lstreams can only be opened for input; others only for output; and others can be opened either
way. #### Richard Mlynarik thinks that there should be a strict separation between input
and output streams, and he’s probably right.

mode is a string, one of

"r" Open for reading.

"w" Open for writing.

"rc" Open for reading, but “read” never returns partial MULE characters.

"wc" Open for writing, but never writes partial MULE characters.

17.2 Lstream Types

stdio

filedesc

lisp-string

fixed-buffer
resizing-buffer
dynarr

lisp-buffer

print

decoding

encoding
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17.3 Lstream Functions

FunctionLstream * Lstream new (Lstream_implementation *imp, CONST char
*mode)

Allocate and return a new Lstream. This function is not really meant to be called directly;
rather, each stream type should provide its own stream creation function, which creates
the stream and does any other necessary creation stuff (e.g. opening a file).

Functionvoid Lstream set buffering (Lstream *lstr, Lstream_buffering
buffering, int buffering size)

Change the buffering of a stream. See ‘lstream.h’. By default the buffering is STREAM_
BLOCK_BUFFERED.

Functionint Lstream flush (Lstream *lstr)
Flush out any pending unwritten data in the stream. Clear any buffered input data.
Returns 0 on success, -1 on error.

Macroint Lstream putc (Lstream *stream, int c)
Write out one byte to the stream. This is a macro and so it is very efficient. The c
argument is only evaluated once but the stream argument is evaluated more than once.
Returns 0 on success, -1 on error.

Macroint Lstream getc (Lstream *stream)
Read one byte from the stream. This is a macro and so it is very efficient. The stream
argument is evaluated more than once. Return value is -1 for EOF or error.

Macrovoid Lstream ungetc (Lstream *stream, int c)
Push one byte back onto the input queue. This will be the next byte read from the stream.
Any number of bytes can be pushed back and will be read in the reverse order they were
pushed back – most recent first. (This is necessary for consistency – if there are a number
of bytes that have been unread and I read and unread a byte, it needs to be the first to be
read again.) This is a macro and so it is very efficient. The c argument is only evaluated
once but the stream argument is evaluated more than once.

Functionint Lstream fputc (Lstream *stream, int c)
Functionint Lstream fgetc (Lstream *stream)
Functionvoid Lstream fungetc (Lstream *stream, int c)

Function equivalents of the above macros.

Functionint Lstream read (Lstream *stream, void *data, int size)
Read size bytes of data from the stream. Return the number of bytes read. 0 means EOF.
-1 means an error occurred and no bytes were read.

Functionint Lstream write (Lstream *stream, void *data, int size)
Write size bytes of data to the stream. Return the number of bytes written. -1 means an
error occurred and no bytes were written.

Functionvoid Lstream unread (Lstream *stream, void *data, int size)
Push back size bytes of data onto the input queue. The next call to Lstream_read() with
the same size will read the same bytes back. Note that this will be the case even if there
is other pending unread data.
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Functionint Lstream close (Lstream *stream)
Close the stream. All data will be flushed out.

Functionvoid Lstream reopen (Lstream *stream)
Reopen a closed stream. This enables I/O on it again. This is not meant to be called
except from a wrapper routine that reinitializes variables and such – the close routine may
well have freed some necessary storage structures, for example.

Functionvoid Lstream rewind (Lstream *stream)
Rewind the stream to the beginning.

17.4 Lstream Methods

Lstream Methodint reader (Lstream *stream, unsigned char *data, int size)
Read some data from the stream’s end and store it into data, which can hold size bytes.
Return the number of bytes read. A return value of 0 means no bytes can be read at this
time. This may be because of an EOF, or because there is a granularity greater than one
byte that the stream imposes on the returned data, and size is less than this granularity.
(This will happen frequently for streams that need to return whole characters, because
Lstream_read() calls the reader function repeatedly until it has the number of bytes it
wants or until 0 is returned.) The lstream functions do not treat a 0 return as EOF or do
anything special; however, the calling function will interpret any 0 it gets back as EOF.
This will normally not happen unless the caller calls Lstream_read() with a very small
size.
This function can be NULL if the stream is output-only.

Lstream Methodint writer (Lstream *stream, CONST unsigned char *data, int
size)

Send some data to the stream’s end. Data to be sent is in data and is size bytes. Return
the number of bytes sent. This function can send and return fewer bytes than is passed in;
in that case, the function will just be called again until there is no data left or 0 is returned.
A return value of 0 means that no more data can be currently stored, but there is no error;
the data will be squirreled away until the writer can accept data. (This is useful, e.g.,
if you’re dealing with a non-blocking file descriptor and are getting EWOULDBLOCK errors.)
This function can be NULL if the stream is input-only.

Lstream Methodint rewinder (Lstream *stream)
Rewind the stream. If this is NULL, the stream is not seekable.

Lstream Methodint seekable p (Lstream *stream)
Indicate whether this stream is seekable – i.e. it can be rewound. This method is ignored
if the stream does not have a rewind method. If this method is not present, the result is
determined by whether a rewind method is present.

Lstream Methodint flusher (Lstream *stream)
Perform any additional operations necessary to flush the data in this stream.

Lstream Methodint pseudo closer (Lstream *stream)
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Lstream Methodint closer (Lstream *stream)
Perform any additional operations necessary to close this stream down. May be NULL.
This function is called when Lstream_close() is called or when the stream is garbage-
collected. When this function is called, all pending data in the stream will already have
been written out.

Lstream MethodLisp_Object marker (Lisp_Object lstream, void (*markfun)
(Lisp_Object))

Mark this object for garbage collection. Same semantics as a standard Lisp_Object
marker. This function can be NULL.
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18 Consoles; Devices; Frames; Windows

18.1 Introduction to Consoles; Devices; Frames; Windows

A window-system window that you see on the screen is called a frame in Emacs terminology.
Each frame is subdivided into one or more non-overlapping panes, called (confusingly) windows.
Each window displays the text of a buffer in it. (See above on Buffers.) Note that buffers and
windows are independent entities: Two or more windows can be displaying the same buffer
(potentially in different locations), and a buffer can be displayed in no windows.

A single display screen that contains one or more frames is called a display. Under most
circumstances, there is only one display. However, more than one display can exist, for example
if you have a multi-headed console, i.e. one with a single keyboard but multiple displays.
(Typically in such a situation, the various displays act like one large display, in that the mouse
is only in one of them at a time, and moving the mouse off of one moves it into another.) In
some cases, the different displays will have different characteristics, e.g. one color and one mono.

XEmacs can display frames on multiple displays. It can even deal simultaneously with frames
on multiple keyboards (called consoles in XEmacs terminology). Here is one case where this
might be useful: You are using XEmacs on your workstation at work, and leave it running.
Then you go home and dial in on a TTY line, and you can use the already-running XEmacs
process to display another frame on your local TTY.

Thus, there is a hierarchy console -> display -> frame -> window. There is a separate Lisp
object type for each of these four concepts. Furthermore, there is logically a selected console,
selected display, selected frame, and selected window. Each of these objects is distinguished in
various ways, such as being the default object for various functions that act on objects of that
type. Note that every containing object rememembers the “selected” object among the objects
that it contains: e.g. not only is there a selected window, but every frame remembers the last
window in it that was selected, and changing the selected frame causes the remembered window
within it to become the selected window. Similar relationships apply for consoles to devices and
devices to frames.

18.2 Point

Recall that every buffer has a current insertion position, called point. Now, two or more
windows may be displaying the same buffer, and the text cursor in the two windows (i.e. point)
can be in two different places. You may ask, how can that be, since each buffer has only one
value of point? The answer is that each window also has a value of point that is squirreled away
in it. There is only one selected window, and the value of “point” in that buffer corresponds
to that window. When the selected window is changed from one window to another displaying
the same buffer, the old value of point is stored into the old window’s “point” and the value
of point from the new window is retrieved and made the value of point in the buffer. This
means that window-point for the selected window is potentially inaccurate, and if you want to
retrieve the correct value of point for a window, you must special-case on the selected window
and retrieve the buffer’s point instead. This is related to why save-window-excursion does
not save the selected window’s value of point.
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18.3 Window Hierarchy

If a frame contains multiple windows (panes), they are always created by splitting an existing
window along the horizontal or vertical axis. Terminology is a bit confusing here: to split a
window horizontally means to create two side-by-side windows, i.e. to make a vertical cut in
a window. Likewise, to split a window vertically means to create two windows, one above the
other, by making a horizontal cut.

If you split a window and then split again along the same axis, you will end up with a number
of panes all arranged along the same axis. The precise way in which the splits were made should
not be important, and this is reflected internally. Internally, all windows are arranged in a
tree, consisting of two types of windows, combination windows (which have children, and are
covered completely by those children) and leaf windows, which have no children and are visible.
Every combination window has two or more children, all arranged along the same axis. There
are (logically) two subtypes of windows, depending on whether their children are horizontally
or vertically arrayed. There is always one root window, which is either a leaf window (if the
frame contains only one window) or a combination window (if the frame contains more than one
window). In the latter case, the root window will have two or more children, either horizontally or
vertically arrayed, and each of those children will be either a leaf window or another combination
window.

Here are some rules:
1. Horizontal combination windows can never have children that are horizontal combination

windows; same for vertical.
2. Only leaf windows can be split (obviously) and this splitting does one of two things: (a)

turns the leaf window into a combination window and creates two new leaf children, or (b)
turns the leaf window into one of the two new leaves and creates the other leaf. Rule (1)
dictates which of these two outcomes happens.

3. Every combination window must have at least two children.
4. Leaf windows can never become combination windows. They can be deleted, however. If

this results in a violation of (3), the parent combination window also gets deleted.
5. All functions that accept windows must be prepared to accept combination windows, and

do something sane (e.g. signal an error if so). Combination windows do escape to the Lisp
level.

6. All windows have three fields governing their contents: these are hchild (a list of
horizontally-arrayed children), vchild (a list of vertically-arrayed children), and buffer (the
buffer contained in a leaf window). Exactly one of these will be non-nil. Remember that
horizontally-arrayed means “side-by-side” and vertically-arrayed means one above the other.

7. Leaf windows also have markers in their start (the first buffer position displayed in the
window) and pointm (the window’s stashed value of point – see above) fields, while com-
bination windows have nil in these fields.

8. The list of children for a window is threaded through the next and prev fields of each child
window.

9. Deleted windows can be undeleted. This happens as a result of restoring a window con-
figuration, and is unlike frames, displays, and consoles, which, once deleted, can never be
restored. Deleting a window does nothing except set a special dead bit to 1 and clear out
the next, prev, hchild, and vchild fields, for GC purposes.

10. Most frames actually have two top-level windows – one for the minibuffer and one (the root)
for everything else. The modeline (if present) separates these two. The next field of the root
points to the minibuffer, and the prev field of the minibuffer points to the root. The other
next and prev fields are nil, and the frame points to both of these windows. Minibuffer-
less frames have no minibuffer window, and the next and prev of the root window are nil.
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Minibuffer-only frames have no root window, and the next of the minibuffer window is nil
but the prev points to itself. (#### This is an artifact that should be fixed.)

18.4 The Window Object

Windows have the following accessible fields:

frame The frame that this window is on.

mini_p Non-nil if this window is a minibuffer window.

buffer The buffer that the window is displaying. This may change often during the life of
the window.

dedicated
Non-nil if this window is dedicated to its buffer.

pointm This is the value of point in the current buffer when this window is selected; when
it is not selected, it retains its previous value.

start The position in the buffer that is the first character to be displayed in the window.

force_start
If this flag is non-nil, it says that the window has been scrolled explicitly by the
Lisp program. This affects what the next redisplay does if point is off the screen:
instead of scrolling the window to show the text around point, it moves point to a
location that is on the screen.

last_modified
The modified field of the window’s buffer, as of the last time a redisplay completed
in this window.

last_point
The buffer’s value of point, as of the last time a redisplay completed in this window.

left This is the left-hand edge of the window, measured in columns. (The leftmost
column on the screen is column 0.)

top This is the top edge of the window, measured in lines. (The top line on the screen
is line 0.)

height The height of the window, measured in lines.

width The width of the window, measured in columns.

next This is the window that is the next in the chain of siblings. It is nil in a window
that is the rightmost or bottommost of a group of siblings.

prev This is the window that is the previous in the chain of siblings. It is nil in a window
that is the leftmost or topmost of a group of siblings.

parent Internally, XEmacs arranges windows in a tree; each group of siblings has a parent
window whose area includes all the siblings. This field points to a window’s parent.
Parent windows do not display buffers, and play little role in display except to shape
their child windows. Emacs Lisp programs usually have no access to the parent
windows; they operate on the windows at the leaves of the tree, which actually
display buffers.

hscroll This is the number of columns that the display in the window is scrolled horizontally
to the left. Normally, this is 0.
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use_time This is the last time that the window was selected. The function get-lru-window
uses this field.

display_table
The window’s display table, or nil if none is specified for it.

update_mode_line
Non-nil means this window’s mode line needs to be updated.

base_line_number
The line number of a certain position in the buffer, or nil. This is used for displaying
the line number of point in the mode line.

base_line_pos
The position in the buffer for which the line number is known, or nil meaning none
is known.

region_showing
If the region (or part of it) is highlighted in this window, this field holds the mark
position that made one end of that region. Otherwise, this field is nil.
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19 The Redisplay Mechanism

The redisplay mechanism is one of the most complicated sections of XEmacs, especially
from a conceptual standpoint. This is doubly so because, unlike for the basic aspects of the
Lisp interpreter, the computer science theories of how to efficiently handle redisplay are not
well-developed.

When working with the redisplay mechanism, remember the Golden Rules of Redisplay:
1. It Is Better To Be Correct Than Fast.
2. Thou Shalt Not Run Elisp From Within Redisplay.
3. It Is Better To Be Fast Than Not To Be.

19.1 Critical Redisplay Sections

Within this section, we are defenseless and assume that the following cannot happen:
1. garbage collection
2. Lisp code evaluation
3. frame size changes

We ensure (3) by calling hold_frame_size_changes(), which will cause any pending frame
size changes to get put on hold till after the end of the critical section. (1) follows automatically
if (2) is met. #### Unfortunately, there are some places where Lisp code can be called within
this section. We need to remove them.

If Fsignal() is called during this critical section, we will abort().
If garbage collection is called during this critical section, we simply return. #### We

should abort instead.
#### If a frame-size change does occur we should probably actually be preempting redis-

play.

19.2 Line Start Cache

The traditional scrolling code in Emacs breaks in a variable height world. It depends on
the key assumption that the number of lines that can be displayed at any given time is fixed.
This led to a complete separation of the scrolling code from the redisplay code. In order to
fully support variable height lines, the scrolling code must actually be tightly integrated with
redisplay. Only redisplay can determine how many lines will be displayed on a screen for any
given starting point.

What is ideally wanted is a complete list of the starting buffer position for every possible
display line of a buffer along with the height of that display line. Maintaining such a full list
would be very expensive. We settle for having it include information for all areas which we
happen to generate anyhow (i.e. the region currently being displayed) and for those areas we
need to work with.

In order to ensure that the cache accurately represents what redisplay would actually show,
it is necessary to invalidate it in many situations. If the buffer changes, the starting positions
may no longer be correct. If a face or an extent has changed then the line heights may have
altered. These events happen frequently enough that the cache can end up being constantly
disabled. With this potentially constant invalidation when is the cache ever useful?
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Even if the cache is invalidated before every single usage, it is necessary. Scrolling often
requires knowledge about display lines which are actually above or below the visible region. The
cache provides a convenient light-weight method of storing this information for multiple display
regions. This knowledge is necessary for the scrolling code to always obey the First Golden Rule
of Redisplay.

If the cache already contains all of the information that the scrolling routines happen to need
so that it doesn’t have to go generate it, then we are able to obey the Third Golden Rule of
Redisplay. The first thing we do to help out the cache is to always add the displayed region.
This region had to be generated anyway, so the cache ends up getting the information basically
for free. In those cases where a user is simply scrolling around viewing a buffer there is a high
probability that this is sufficient to always provide the needed information. The second thing
we can do is be smart about invalidating the cache.

TODO – Be smart about invalidating the cache. Potential places:
• Insertions at end-of-line which don’t cause line-wraps do not alter the starting positions of

any display lines. These types of buffer modifications should not invalidate the cache. This
is actually a large optimization for redisplay speed as well.

• Buffer modifications frequently only affect the display of lines at and below where they
occur. In these situations we should only invalidate the part of the cache starting at where
the modification occurs.

In case you’re wondering, the Second Golden Rule of Redisplay is not applicable.
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20 Extents

20.1 Introduction to Extents

Extents are regions over a buffer, with a start and an end position denoting the region of
the buffer included in the extent. In addition, either end can be closed or open, meaning that
the endpoint is or is not logically included in the extent. Insertion of a character at a closed
endpoint causes the character to go inside the extent; insertion at an open endpoint causes the
character to go outside.

Extent endpoints are stored using memory indices (see ‘insdel.c’), to minimize the amount
of adjusting that needs to be done when characters are inserted or deleted.

(Formerly, extent endpoints at the gap could be either before or after the gap, depending on
the open/closedness of the endpoint. The intent of this was to make it so that insertions would
automatically go inside or out of extents as necessary with no further work needing to be done.
It didn’t work out that way, however, and just ended up complexifying and buggifying all the
rest of the code.)

20.2 Extent Ordering

Extents are compared using memory indices. There are two orderings for extents and both
orders are kept current at all times. The normal or display order is as follows:

Extent A is ‘‘less than’’ extent B, that is, earlier in the display order,
if: A-start < B-start,
or if: A-start = B-start, and A-end > B-end

So if two extents begin at the same position, the larger of them is the earlier one in the
display order (EXTENT_LESS is true).

For the e-order, the same thing holds:
Extent A is ‘‘less than’’ extent B in e-order, that is, later in the buffer,
if: A-end < B-end,
or if: A-end = B-end, and A-start > B-start

So if two extents end at the same position, the smaller of them is the earlier one in the e-order
(EXTENT_E_LESS is true).

The display order and the e-order are complementary orders: any theorem about the display
order also applies to the e-order if you swap all occurrences of “display order” and “e-order”,
“less than” and “greater than”, and “extent start” and “extent end”.

20.3 Format of the Extent Info

An extent-info structure consists of a list of the buffer or string’s extents and a stack of
extents that lists all of the extents over a particular position. The stack-of-extents info is used
for optimization purposes – it basically caches some info that might be expensive to compute.
Certain otherwise hard computations are easy given the stack of extents over a particular posi-
tion, and if the stack of extents over a nearby position is known (because it was calculated at
some prior point in time), it’s easy to move the stack of extents to the proper position.
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Given that the stack of extents is an optimization, and given that it requires memory, a
string’s stack of extents is wiped out each time a garbage collection occurs. Therefore, any time
you retrieve the stack of extents, it might not be there. If you need it to be there, use the _force
version.

Similarly, a string may or may not have an extent info structure. (Generally it won’t if
there haven’t been any extents added to the string.) So use the _force version if you need the
extent info structure to be there.

A list of extents is maintained as a double gap array: one gap array is ordered by start index
(the display order) and the other is ordered by end index (the e-order). Note that positions in
an extent list should logically be conceived of as referring to a particular extent (as is the norm
in programs) rather than sitting between two extents. Note also that callers of these functions
should not be aware of the fact that the extent list is implemented as an array, except for the
fact that positions are integers (this should be generalized to handle integers and linked list
equally well).

20.4 Zero-Length Extents

Extents can be zero-length, and will end up that way if their endpoints are explicitly set
that way or if their detachable property is nil and all the text in the extent is deleted. (The
exception is open-open zero-length extents, which are barred from existing because there is no
sensible way to define their properties. Deletion of the text in an open-open extent causes it
to be converted into a closed-open extent.) Zero-length extents are primarily used to represent
annotations, and behave as follows:
1. Insertion at the position of a zero-length extent expands the extent if both endpoints are

closed; goes after the extent if it is closed-open; and goes before the extent if it is open-
closed.

2. Deletion of a character on a side of a zero-length extent whose corresponding endpoint is
closed causes the extent to be detached if it is detachable; if the extent is not detachable or
the corresponding endpoint is open, the extent remains in the buffer, moving as necessary.

Note that closed-open, non-detachable zero-length extents behave exactly like markers and
that open-closed, non-detachable zero-length extents behave like the “point-type” marker in
Mule.

20.5 Mathematics of Extent Ordering

The extents in a buffer are ordered by “display order” because that is that order that the
redisplay mechanism needs to process them in. The e-order is an auxiliary ordering used to
facilitate operations over extents. The operations that can be performed on the ordered list of
extents in a buffer are
1. Locate where an extent would go if inserted into the list.
2. Insert an extent into the list.
3. Remove an extent from the list.
4. Map over all the extents that overlap a range.

(4) requires being able to determine the first and last extents that overlap a range.
NOTE: overlap is used as follows:
• two ranges overlap if they have at least one point in common. Whether the endpoints are

open or closed makes a difference here.
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• a point overlaps a range if the point is contained within the range; this is equivalent to
treating a point P as the range [P, P ].

• In the case of an extent overlapping a point or range, the extent is normally treated as
having closed endpoints. This applies consistently in the discussion of stacks of extents and
such below. Note that this definition of overlap is not necessarily consistent with the extents
that map-extents maps over, since map-extents sometimes pays attention to whether the
endpoints of an extents are open or closed. But for our purposes, it greatly simplifies things
to treat all extents as having closed endpoints.

First, define >, <, < =, etc. as applied to extents to mean comparison according to the
display order. Comparison between an extent E and an index I means comparison between E
and the range [I, I].

Also define e>, e<, e< =, etc. to mean comparison according to the e-order.
For any range R, define R(0) to be the starting index of the range and R(1) to be the ending

index of the range.
For any extent E, define E(next) to be the extent directly following E, and E(prev) to be

the extent directly preceding E. Assume E(next) and E(prev) can be determined from E in
constant time. (This is because we store the extent list as a doubly linked list.)

Similarly, define E(e−next) and E(e−prev) to be the extents directly following and preceding
E in the e-order.

Now:
Let R be a range. Let F be the first extent overlapping R. Let L be the last extent overlapping

R.
Theorem 1: R(1) lies between L and L(next), i.e. L< = R(1)<L(next).
This follows easily from the definition of display order. The basic reason that this theorem

applies is that the display order sorts by increasing starting index.
Therefore, we can determine L just by looking at where we would insert R(1) into the list,

and if we know F and are moving forward over extents, we can easily determine when we’ve hit
L by comparing the extent we’re at to R(1).

Theorem 2: F (e− prev) e< [1, R(0)] e< = F.

This is the analog of Theorem 1, and applies because the e-order sorts by increasing ending
index.

Therefore, F can be found in the same amount of time as operation (1), i.e. the time that it
takes to locate where an extent would go if inserted into the e-order list.

If the lists were stored as balanced binary trees, then operation (1) would take logarithmic
time, which is usually quite fast. However, currently they’re stored as simple doubly-linked lists,
and instead we do some caching to try to speed things up.

Define a stack of extents (or SOE) as the set of extents (ordered in the display order) that
overlap an index I, together with the SOE’s previous extent, which is an extent that precedes
I in the e-order. (Hopefully there will not be very many extents between I and the previous
extent.)

Now:
Let I be an index, let S be the stack of extents on I, let F be the first extent in S, and let

P be S’s previous extent.
Theorem 3: The first extent in S is the first extent that overlaps any range [I, J ].
Proof: Any extent that overlaps [I, J ] but does not include I must have a start index >I,

and thus be greater than any extent in S.
Therefore, finding the first extent that overlaps a range R is the same as finding the first

extent that overlaps R(0).
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Theorem 4: Let I2 be an index such that I2>I, and let F2 be the first extent that overlaps
I2. Then, either F2 is in S or F2 is greater than any extent in S.

Proof: If F2 does not include I then its start index is greater than I and thus it is greater
than any extent in S, including F . Otherwise, F2 includes I and thus is in S, and thus F2> = F .

20.6 Extent Fragments

Imagine that the buffer is divided up into contiguous, non-overlapping runs of text such that
no extent starts or ends within a run (extents that abut the run don’t count).

An extent fragment is a structure that holds data about the run that contains a particular
buffer position (if the buffer position is at the junction of two runs, the run after the position
is used) – the beginning and end of the run, a list of all of the extents in that run, the merged
face that results from merging all of the faces corresponding to those extents, the begin and end
glyphs at the beginning of the run, etc. This is the information that redisplay needs in order to
display this run.

Extent fragments have to be very quick to update to a new buffer position when moving
linearly through the buffer. They rely on the stack-of-extents code, which does the heavy-duty
algorithmic work of determining which extents overly a particular position.
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21 Faces and Glyphs

Not yet documented.
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22 Specifiers

Not yet documented.
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23 Menus

A menu is set by setting the value of the variable current-menubar (which may be buffer-
local) and then calling set-menubar-dirty-flag to signal a change. This will cause the menu
to be redrawn at the next redisplay. The format of the data in current-menubar is described
in ‘menubar.c’.

Internally the data in current-menubar is parsed into a tree of widget_value’s (defined in
‘lwlib.h’); this is accomplished by the recursive function menu_item_descriptor_to_widget_
value(), called by compute_menubar_data(). Such a tree is deallocated using free_widget_
value().

update_screen_menubars() is one of the external entry points. This checks to see, for each
screen, if that screen’s menubar needs to be updated. This is the case if
1. set-menubar-dirty-flag was called since the last redisplay. (This function sets the C

variable menubar has changed.)
2. The buffer displayed in the screen has changed.
3. The screen has no menubar currently displayed.

set_screen_menubar() is called for each such screen. This function calls compute_menubar_
data() to create the tree of widget value’s, then calls lw_create_widget(), lw_modify_all_
widgets(), and/or lw_destroy_all_widgets() to create the X-Toolkit widget associated with
the menu.

update_psheets(), the other external entry point, actually changes the menus being dis-
played. It uses the widgets fixed by update_screen_menubars() and calls various X functions
to ensure that the menus are displayed properly.

The menubar widget is set up so that pre_activate_callback() is called when the menu
is first selected (i.e. mouse button goes down), and menubar_selection_callback() is called
when an item is selected. pre_activate_callback() calls the function in activate-menubar-
hook, which can change the menubar (this is described in ‘menubar.c’). If the menubar is
changed, set_screen_menubars() is called. menubar_selection_callback() enqueues a menu
event, putting in it a function to call (either eval or call-interactively) and its argument,
which is the callback function or form given in the menu’s description.
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24 Subprocesses

The fields of a process are:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.

filter A function used to accept output from the process instead of a buffer, or nil.

sentinel A function called whenever the process receives a signal, or nil.

buffer The associated buffer of the process.

pid An integer, the Unix process id.

childp A flag, non-nil if this is really a child process. It is nil for a network connection.

mark A marker indicating the position of the end of the last output from this process
inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query
If this is non-nil, killing XEmacs while this process is still running does not ask for
confirmation about killing the process.

raw_status_low
raw_status_high

These two fields record 16 bits each of the process status returned by the wait
system call.

status The process status, as process-status should return it.

tick
update_tick

If these two fields are not equal, a change in the status of the process needs to be
reported, either by running the sentinel or by inserting a message in the process
buffer.

pty_flag Non-nil if communication with the subprocess uses a pty; nil if it uses a pipe.

infd The file descriptor for input from the process.

outfd The file descriptor for output to the process.

subtty The file descriptor for the terminal that the subprocess is using. (On some systems,
there is no need to record this, so the value is -1.)

tty_name The name of the terminal that the subprocess is using, or nil if it is using pipes.
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25 Interface to X Windows

Not yet documented.
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